Limitwise monotonic reducibility of sets and $\Sigma$-definability of abelian groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of limitwise monotonic sets, as well as to the investigation of the main structural properties of limitwise monotonic reducibility (for short we will also write $lm$-reducibility) between sets. In this paper, we obtain a description of the algorithmic dependence between the limitwise monotonic reducibility of sets, which defined in terms of the $\Sigma$-reducibility of the families of initial segments, and the $\Sigma$-definability of abelian groups.
Keywords: limitwise monotonic function, limitwise monotonic set, limitwise monotonic reducibility, family of subsets of natural numbers, $\Sigma$-reducibility, $\Sigma$-definability, abelian group, hereditarily finite superstructure.
@article{IVM_2019_2_a2,
     author = {D. Kh. Zainetdinov},
     title = {Limitwise monotonic reducibility of sets and $\Sigma$-definability of abelian groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--28},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_2_a2/}
}
TY  - JOUR
AU  - D. Kh. Zainetdinov
TI  - Limitwise monotonic reducibility of sets and $\Sigma$-definability of abelian groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 21
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_2_a2/
LA  - ru
ID  - IVM_2019_2_a2
ER  - 
%0 Journal Article
%A D. Kh. Zainetdinov
%T Limitwise monotonic reducibility of sets and $\Sigma$-definability of abelian groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 21-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_2_a2/
%G ru
%F IVM_2019_2_a2
D. Kh. Zainetdinov. Limitwise monotonic reducibility of sets and $\Sigma$-definability of abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2019), pp. 21-28. http://geodesic.mathdoc.fr/item/IVM_2019_2_a2/

[1] Khisamiev N. G., “Kriterii konstruktiviziruemosti pryamoi summy tsiklicheskikh $p$-grupp”, Izv. AN Kazakhskoi SSR, ser. fiz.-matem., 98:1 (1981), 51–55

[2] Khoussainov B., Nies A., Shore R., “Computable models of theories with few models”, Notre Dame J. Formal Logic, 38:2 (1997), 165–178 | DOI | MR | Zbl

[3] Kalimullin I., Khoussainov B., Melnikov A., “Limitwise monotonic sequences and degree spectra of structures”, Proc. Amer. Math. Soc., 141:9 (2013), 3275–3289 | DOI | MR | Zbl

[4] Downey R. G., Kach A. M., Turetsky D., “Limitwise monotonic functions and their applications”, Proceedings of the 11th Asian Logic Conf. World Sci, 2011, 59–85 | DOI | MR

[5] Zainetdinov D. Kh., Kalimullin I. Sh., “O predelno monotonnoi svodimosti $\Sigma^0_2$-mnozhestv”, Uchen. zap. Kazansk. gos. un-ta. Ser. Fiz.-matem. nauki, 156, no. 1, 2014, 22–30

[6] Faizrahmanov M., Kalimullin I., Zainetdinov D., “Maximality and minimality under limitwise monotonic reducibility”, Lobachevskii J. Math., 35:4 (2014), 333–338 | DOI | MR | Zbl

[7] Kalimullin I. Sh., Puzarenko V. G., “O svodimosti na semeistvakh”, Algebra i logika, 48:1 (2009), 31–53 | Zbl

[8] Zainetdinov D. Kh., “$\Sigma$-svodimost i $lm$-svodimost mnozhestv i posledovatelnostei mnozhestv”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 158, no. 1, 2016, 51–65

[9] Ershov Yu. L., Opredelimost i vychislimost, 2-e izd., ispr. i dop., Ekonomika, M.; Nauchn. kniga, Novosibirsk, 2000 | MR

[10] Puzarenko V. G., “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl

[11] Puzarenko V. G., “Ob odnoi svodimosti na dopustimykh mnozhestvakh”, Sib. matem. zhurn., 50:2 (2009), 415–429 | MR