On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 76-85
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the solvability of a nonlinear boundary-value problem for systems of nonlinear partial differential equations of second order. The aim of the work is the proof the theorem existence for solutions. The problem is reduced to a system of three-dimensional nonlinear singular integral equations, whose solvability can be proved with the use of the symbol of a singular operator and the principle of compressed mappings.
Keywords:
elastic inhomogeneous anisotropic body, equilibrium equations, boundary-value problem, three-dimensional singular integral equations, symbol singular operator, existence theorem.
@article{IVM_2019_1_a7,
author = {S. N. Timergaliev and R. S. Yakushev},
title = {On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--85},
publisher = {mathdoc},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/}
}
TY - JOUR AU - S. N. Timergaliev AU - R. S. Yakushev TI - On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 76 EP - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/ LA - ru ID - IVM_2019_1_a7 ER -
%0 Journal Article %A S. N. Timergaliev %A R. S. Yakushev %T On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 76-85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/ %G ru %F IVM_2019_1_a7
S. N. Timergaliev; R. S. Yakushev. On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 76-85. http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/