On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the solvability of a nonlinear boundary-value problem for systems of nonlinear partial differential equations of second order. The aim of the work is the proof the theorem existence for solutions. The problem is reduced to a system of three-dimensional nonlinear singular integral equations, whose solvability can be proved with the use of the symbol of a singular operator and the principle of compressed mappings.
Keywords: elastic inhomogeneous anisotropic body, equilibrium equations, boundary-value problem, three-dimensional singular integral equations, symbol singular operator, existence theorem.
@article{IVM_2019_1_a7,
     author = {S. N. Timergaliev and R. S. Yakushev},
     title = {On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--85},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/}
}
TY  - JOUR
AU  - S. N. Timergaliev
AU  - R. S. Yakushev
TI  - On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 76
EP  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/
LA  - ru
ID  - IVM_2019_1_a7
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%A R. S. Yakushev
%T On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 76-85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/
%G ru
%F IVM_2019_1_a7
S. N. Timergaliev; R. S. Yakushev. On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 76-85. http://geodesic.mathdoc.fr/item/IVM_2019_1_a7/

[1] Novozhilov V. V., Osnovy nelineinoi teorii uprugosti, Gostekhizdat, L.–M., 1948

[2] Kupradze V. D., Gegelia T. G., Basheleishvili M. O., Burguladze T. V., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976

[3] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981

[4] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[5] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980

[6] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992

[7] Aleksandrov A. Ya., Solovev Yu. I., Prostranstvennye zadachi teorii uprugosti (primenenie metodov teorii funktsii kompleksnogo peremennogo), Nauka, M., 1978

[8] Guryanov N. G., Tyuleneva O. N., Kraevye zadachi teorii uprugosti dlya shara i tsilindra, Izd-vo Kazansk. un-ta, Kazan, 2008

[9] Timergaliev S. N., “Ob odnom podkhode k issledovaniyu razreshimosti kraevykh zadach dlya sistemy differentsialnykh uravnenii prostranstvennoi teorii uprugosti”, Differents. uravneniya, 52:4 (2016), 544–548 | DOI | MR | Zbl

[10] Vladimirov V. S., Uravneniya matematicheskoi fiziki, 5-e izd. dop., Nauka, M., 1988

[11] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968

[12] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962

[13] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956