On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 69-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the arithmetic properties of the value $\mathrm{arctg}\, \frac {1}{3}$. We elaborate special integral construction with the property of symmetry for evaluating irrationality measure of this number. We research linear form, generated by this integral, and prove a new result for extent of the irrationality of $\mathrm{arctg}\, \frac {1}{3}$, which improves the previous one.
Keywords: irrationality measure, linear form.
@article{IVM_2019_1_a6,
     author = {V. Kh. Salikhov and M. G. Bashmakova},
     title = {On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--75},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a6/}
}
TY  - JOUR
AU  - V. Kh. Salikhov
AU  - M. G. Bashmakova
TI  - On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 69
EP  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_1_a6/
LA  - ru
ID  - IVM_2019_1_a6
ER  - 
%0 Journal Article
%A V. Kh. Salikhov
%A M. G. Bashmakova
%T On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 69-75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_1_a6/
%G ru
%F IVM_2019_1_a6
V. Kh. Salikhov; M. G. Bashmakova. On irrationality measure $\mathrm{arctg}\, \frac {1}{3}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 69-75. http://geodesic.mathdoc.fr/item/IVM_2019_1_a6/

[1] Salikhov V. Kh., “O mere irratsionalnosti $\ln3$”, Dokl. RAN, 417:6 (2007), 753–755 | Zbl

[2] Wu Q., Wang L., “On the irrationality measure of $\log 3$”, J. Number Theory, 142 (2014), 264–273 | DOI | MR | Zbl

[3] Huttner M., “Irrationalité de certaines intégrales hypergéométriques”, J. Number Theory, 26 (1987), 166–178 | DOI | MR | Zbl

[4] Heimonen A., Matala-Aho T., Väänänen K., “On irrationality measures of the values of Gauss hypergeometric function”, Manuscripta Math., 81:1–2 (1993), 183–202 | DOI | MR | Zbl

[5] Heimonen A., Matala-Aho T., V\"{aä}nänen K., “An application of Jacobi type polynomials to irrationality measures”, Bull. Austral. Math. Soc., 50:2 (1994), 225–243 | DOI | MR | Zbl

[6] Tomashevskaya E. B., “O mere irratsionalnosti chisla $\ln5+ \pi/2$ i nekotorykh drugikh chisel”, Chebyshevsk. sb., 8:2 (2007), 97–108

[7] Bashmakova M. G., “O priblizhenii znachenii gipergeometricheskoi funktsii Gaussa ratsionalnymi drobyami”, Matem. zametki, 88:6 (2010), 785–797 | DOI | Zbl

[8] Hata M., “Rational approximation to $\pi$ and some other numbers”, Acta Arith., 63:4 (1993), 335–349 | DOI | MR | Zbl

[9] Wu Q., “On the linear independence measure of logarithms of rational numbers”, Math. Comput., 72:242 (2002), 901–911 | DOI | MR

[10] Salikhov V. Kh., “O mere irratsionalnosti chisla $\pi$”, UMN, 63:3 (2008), 163–164 | DOI

[11] Marcovecchio R., “The Rhin–Viola method for $\ln 2$”, Acta Arith., 139:2 (2009), 147–184 | DOI | MR | Zbl