Representing systems of exponentials in projective limits of weigth subspaces of $A^\infty (D)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a normed space of functions holomorphic in a bounded convex domain which are infinitely differentiable up to the boundary and have certain estimates of all derivatives given by a convex sequence of positive numbers. We consider its largest linear subspace that is invariant with respect to the operator of differentiation, in which the natural topology of the projective limit is introduced. We prove the duality of this subspace and a certain space of entire functions. Based on this, we construct the representing system of exponentials in it.
Keywords: analytic function, weighted space, locally convex space, sufficient set, representing system of exponentials.
@article{IVM_2019_1_a2,
     author = {K. P. Isaev},
     title = {Representing systems of exponentials in projective limits of weigth subspaces of $A^\infty (D)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--41},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a2/}
}
TY  - JOUR
AU  - K. P. Isaev
TI  - Representing systems of exponentials in projective limits of weigth subspaces of $A^\infty (D)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 29
EP  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_1_a2/
LA  - ru
ID  - IVM_2019_1_a2
ER  - 
%0 Journal Article
%A K. P. Isaev
%T Representing systems of exponentials in projective limits of weigth subspaces of $A^\infty (D)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 29-41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_1_a2/
%G ru
%F IVM_2019_1_a2
K. P. Isaev. Representing systems of exponentials in projective limits of weigth subspaces of $A^\infty (D)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 29-41. http://geodesic.mathdoc.fr/item/IVM_2019_1_a2/

[1] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, UMN, 36:1 (1981), 73–126 | MR | Zbl

[2] Leontev A. F., Ryady eksponent, Nauka, M., 1976

[3] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 657–702 | MR | Zbl

[4] Isaev K. P., “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufimsk. matem. zhurn., 2:1 (2010), 71–86

[5] Lyubarskii Yu. I., “Ryady eksponent v prostranstve Smirnova i interpolyatsiya tselymi funktsiyami spetsialnykh klassov”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 559–580

[6] Ehrenpreis L., Fourier analysis several complex variables, Willey Interscience publishers, New York, 1970 | MR | Zbl

[7] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | Zbl

[8] Abuzyarova N. F., Yulmukhametov R. S., “Sopryazhennye prostranstva k vesovym prostranstvam analiticheskikh funktsii”, Sib. matem. zhurn., 42:1 (2001), 3–17 | MR | Zbl

[9] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[10] Epifanov O. V., “Variatsii slabo dostatochnykh mnozhestv v prostranstvakh analiticheskikh funktsii”, Izv. vuzov. Matem., 1986, no. 7, 50–56 | Zbl

[11] Abanin A. V., Slabo dostatochnye mnozhestva i absolyutno predstavlyayuschie sistemy, Diss. ... dokt. fiz.-matem. nauk, Rostov-na-Donu, 1995

[12] Abanin A. V., “Netrivialnye razlozheniya nulya i absolyutno predstavlyayuschie sistemy”, Matem. zametki, 57:4 (1995), 483–492 | DOI | MR

[13] Abanin A. V., “Kharakterizatsiya minmimalnykh sistem pokazatelei predstavlyayuschikh sistem obobschennykh eksponent”, Izv. vuzov. Matem., 1991, no. 2, 3–12 | MR | Zbl

[14] Abanin A. V., Nalbandyan Yu. S., “Absolyutno predstavlyayuschie sistemy eksponent minimalnogo tipa v prostranstvakh funktsii s zadannym rostom vblizi granitsy”, Izv. vuzov. Matem., 1993, no. 10, 73–76 | Zbl

[15] Abanin A. V., Le Hai Khoi, Nalbandyan Yu.S., “Minimal absolutely representing systems of exponentials for $A^{-\infty }(\Omega )$”, J. Approx. Theory, 163:10 (2011), 1534–1545 | DOI | MR | Zbl

[16] Yulmukhametov R. S., “Priblizhenie subgarmonicheskikh funktsii”, Matem. sb., 124:3 (1984), 393–415 | Zbl

[17] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130:4 (1986), 500–519

[18] Napalkov V. V., “O sravnenii topologii v nekotorykh prostranstvakh tselykh funktsii”, DAN SSSR, 264:4 (1982), 827–830 | Zbl