On approximation of non-analytic functions by analytical ones
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the elements of best approximation for functions summed up over the unit circle of functions by functions from the Bergman space. For approximable functions of a special type, we five a sufficiently accurate description of the properties of these elements in terms of the Hardy and Lipschitz classes. The result obtained is based on an analysis of the corresponding duality relation for extremal problems. The developed method is also applicable to relatively smooth (in terms of Sobolev spaces) approximable functions.
Keywords: Bergman space, Hardy space, element of best approximation, linear functional, extremal problems.
@article{IVM_2019_1_a1,
     author = {H. H. Burchaev and G. Y. Ryabykh},
     title = {On approximation of non-analytic functions by analytical ones},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--28},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/}
}
TY  - JOUR
AU  - H. H. Burchaev
AU  - G. Y. Ryabykh
TI  - On approximation of non-analytic functions by analytical ones
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 18
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/
LA  - ru
ID  - IVM_2019_1_a1
ER  - 
%0 Journal Article
%A H. H. Burchaev
%A G. Y. Ryabykh
%T On approximation of non-analytic functions by analytical ones
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 18-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/
%G ru
%F IVM_2019_1_a1
H. H. Burchaev; G. Y. Ryabykh. On approximation of non-analytic functions by analytical ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 18-28. http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/

[1] Khavinson D., Shapiro H. S., “Best approximation in the supremum norm by analytic and harmonic functions”, Arc. Mat., 39:2 (2001), 339–359 | DOI | MR | Zbl

[2] Burchaev Kh. Kh., Ryabykh V. G., Ryabykh G. Yu., Integrodifferentsialnye operatory v prostranstvakh analiticheskikh funktsii i nekotorye ikh prilozheniya, ITs DGTU, Rostov-na-Donu, 2014

[3] Pozharskii D. A., Ryabykh V. G., Ryabykh G. Yu., Integralnye operatory v prostranstvakh analiticheskikh funktsii i blizkikh k nim, ITs DGTU, Rostov-na-Donu, 2011

[4] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984

[5] Ferguson T., Extremal problems in Bergman spaces and extension of Ryabykh's theorem, A dissertation submitted partial fulfilment of the requirement for the degree of Doctor of Philosophy (Math.), Univ. of Michigan, Michigan, 2011, 76 pp. | MR

[6] Gofman M., Banakhovy prostranstva analiticheskikh funktsii, In. lit., M., 1963

[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952 | MR