Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_1_a1, author = {H. H. Burchaev and G. Y. Ryabykh}, title = {On approximation of non-analytic functions by analytical ones}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--28}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/} }
H. H. Burchaev; G. Y. Ryabykh. On approximation of non-analytic functions by analytical ones. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2019), pp. 18-28. http://geodesic.mathdoc.fr/item/IVM_2019_1_a1/
[1] Khavinson D., Shapiro H. S., “Best approximation in the supremum norm by analytic and harmonic functions”, Arc. Mat., 39:2 (2001), 339–359 | DOI | MR | Zbl
[2] Burchaev Kh. Kh., Ryabykh V. G., Ryabykh G. Yu., Integrodifferentsialnye operatory v prostranstvakh analiticheskikh funktsii i nekotorye ikh prilozheniya, ITs DGTU, Rostov-na-Donu, 2014
[3] Pozharskii D. A., Ryabykh V. G., Ryabykh G. Yu., Integralnye operatory v prostranstvakh analiticheskikh funktsii i blizkikh k nim, ITs DGTU, Rostov-na-Donu, 2011
[4] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984
[5] Ferguson T., Extremal problems in Bergman spaces and extension of Ryabykh's theorem, A dissertation submitted partial fulfilment of the requirement for the degree of Doctor of Philosophy (Math.), Univ. of Michigan, Michigan, 2011, 76 pp. | MR
[6] Gofman M., Banakhovy prostranstva analiticheskikh funktsii, In. lit., M., 1963
[7] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.–L., 1952 | MR