Mots-clés : Voigt type model
@article{IVM_2019_12_a9,
author = {V. G. Zvyagin and V. P. Orlov},
title = {On strong solutions of a fractional nonlinear viscoelastic {Voigt-type} model},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {106--111},
year = {2019},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/}
}
V. G. Zvyagin; V. P. Orlov. On strong solutions of a fractional nonlinear viscoelastic Voigt-type model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 106-111. http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/
[1] Orlov V. P., “O silnykh resheniyakh regulyarizovannoi modeli nelineino-vyazkouprugoi sredy”, Matem. zametki, 84:2 (2008), 238–253 | DOI | Zbl
[2] Orlov V. P., Rode D. A., Pliev M. A., “O slaboi razreshimosti obobschennoi modeli vyazkouprugosti Foigta”, Sib. matem. zhurn., 58:5 (2017), 1110–1127 | Zbl
[3] Zvyagin V. G., Orlov V. P., “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete and Continuous Dynamical Systems, Ser. A, 38:12 (2018), 6327–6350 | DOI | MR
[4] Orlov V. P., Sobolevskii P. E., “O gladkosti obobschennykh reshenii uravnenii dvizheniya pochti nyutonovskoi zhidkosti”, Chislennye metody mekhaniki sploshnoi sredy, 16:1 (1985), 107–119
[5] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987
[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[7] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982
[8] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987