On strong solutions of a fractional nonlinear viscoelastic Voigt-type model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 106-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish existence and uniqueness of a strong solution to the initial-boundary value problem for a system of equations of motion of a nonlinear viscoelastic fluid which is a fraction analogous of Voigt model, in the planar case.
Keywords: nonlinearly viscoelastic medium, initial boundary-value problem, fractional derivative.
Mots-clés : Voigt type model
@article{IVM_2019_12_a9,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {On strong solutions of a fractional nonlinear viscoelastic {Voigt-type} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {106--111},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - On strong solutions of a fractional nonlinear viscoelastic Voigt-type model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 106
EP  - 111
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/
LA  - ru
ID  - IVM_2019_12_a9
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T On strong solutions of a fractional nonlinear viscoelastic Voigt-type model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 106-111
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/
%G ru
%F IVM_2019_12_a9
V. G. Zvyagin; V. P. Orlov. On strong solutions of a fractional nonlinear viscoelastic Voigt-type model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 106-111. http://geodesic.mathdoc.fr/item/IVM_2019_12_a9/

[1] Orlov V. P., “O silnykh resheniyakh regulyarizovannoi modeli nelineino-vyazkouprugoi sredy”, Matem. zametki, 84:2 (2008), 238–253 | DOI | Zbl

[2] Orlov V. P., Rode D. A., Pliev M. A., “O slaboi razreshimosti obobschennoi modeli vyazkouprugosti Foigta”, Sib. matem. zhurn., 58:5 (2017), 1110–1127 | Zbl

[3] Zvyagin V. G., Orlov V. P., “Weak solvability of fractional Voigt model of viscoelasticity”, Discrete and Continuous Dynamical Systems, Ser. A, 38:12 (2018), 6327–6350 | DOI | MR

[4] Orlov V. P., Sobolevskii P. E., “O gladkosti obobschennykh reshenii uravnenii dvizheniya pochti nyutonovskoi zhidkosti”, Chislennye metody mekhaniki sploshnoi sredy, 16:1 (1985), 107–119

[5] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[7] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982

[8] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987