Boundary control of the heat transfer process in the space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 82-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the simplest mathematical model of the following problem. On the part of the border of region $D\subset {\mathbb R}^{2}$ there is a heater having an adjustable temperature. It is required to find such a mode of operation of the heater so that the average temperature in a certain subregion of region $D$ takes the specified value. The existence of the control parameter proved under certain restrictions on the values of the function defined by the integral constraint.
Mots-clés : parabolic equation, Laplace transform.
Keywords: boundary value problem, control problem, control parameter, first kind Volterra integral equation
@article{IVM_2019_12_a7,
     author = {Z. K. Fayazova},
     title = {Boundary control of the heat transfer process in the space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--90},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a7/}
}
TY  - JOUR
AU  - Z. K. Fayazova
TI  - Boundary control of the heat transfer process in the space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 82
EP  - 90
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a7/
LA  - ru
ID  - IVM_2019_12_a7
ER  - 
%0 Journal Article
%A Z. K. Fayazova
%T Boundary control of the heat transfer process in the space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 82-90
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a7/
%G ru
%F IVM_2019_12_a7
Z. K. Fayazova. Boundary control of the heat transfer process in the space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 82-90. http://geodesic.mathdoc.fr/item/IVM_2019_12_a7/