Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_12_a5, author = {S. Yu. Graf}, title = {Nehari type theorems and uniform local univalence of harmonic mappings}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {57--70}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/} }
S. Yu. Graf. Nehari type theorems and uniform local univalence of harmonic mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 57-70. http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Nehari Z., “The Schwarzian derivatives and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[3] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13:6 (1962), 975–978 | DOI | MR | Zbl
[4] Ahlfors L., “Cross-ratios and Schwarzian derivatives in $\mathbb{R}^n$”, Complex Analysis, Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, eds. Hersch J., Huber A., Birkhäuser Verlag, Basel, 1989, 1–15 | MR
[5] Duren P., Harmonic mappings in the plane, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[6] Chuaqui M., Duren P., Osgood B., “The Schwarzian derivative for harmonic mappings”, J. Anal. Math., 91 (2003), 329–351 | DOI | MR | Zbl
[7] Chuaqui M., Duren P., Osgood B., “Univalence criteria for lifts of harmonic mappings to minimal surfaces”, J. Geom. Anal., 17:1 (2007), 49–74 | DOI | MR | Zbl
[8] Nehari Z., “Some criteria of univalence”, Proc. Amer. Math. Soc., 5:5 (1954), 700–704 | DOI | MR | Zbl
[9] Chuaqui M., Duren P., Osgood B., “Schwarzian derivative criteria for valence of analytic and harmonic mappings”, Math. Proc. Camb. Phil. Soc., 143:2 (2007), 473–486 | DOI | MR | Zbl
[10] Hernández R., Martín M. J., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl
[11] Hernández R., Martín M. J., “Criteria for univalence and quasiconformal extension of harmonic mappings in terms of the Schwarzian derivative”, Arch. Math., 104:1 (2015), 53–59 | DOI | MR | Zbl
[12] Graf S.Yu., “On the Schwarzian norm of harmonic mappings”, Probl. Anal. Issues Anal., 5(23):2 (2016), 20–32 | DOI | MR | Zbl
[13] Graf S.Yu., “The Schwarzian derivatives of harmonic functions and univalence conditions”, Probl. Anal. Issues Anal., 6(24):2 (2017), 42–56 | DOI | MR | Zbl
[14] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., 42:2 (1990), 237–248 | DOI | MR | Zbl
[15] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser Verlag, Basel, 2009 | MR | Zbl
[16] Graf S.Yu., Starkov V. V., Ponnusamy S., “Radii of covering disks for locally univalent harmonic mappings”, Monatsh. Math., 180:3 (2016), 527–548 | DOI | MR | Zbl
[17] Pommerenke Ch., “Linear-invariante Familien analytischer Functionen. I”, Math. Ann., 155:2 (1964), 108–154 | DOI | MR | Zbl
[18] Duren P., Univalent functions, Springer-Verlag, N. Y., 1983 | MR | Zbl
[19] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl
[20] Wirths K.-J., “Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen”, Archiv der Math., 30:6 (1978), 606–612 | DOI | MR | Zbl
[21] Kayumov I. R., Starkov V. V., “Estimate of logarithmic coefficients of locally univalent functions”, XVIth Rolf Nevanlinna Colloquium, eds. Laine M., de Gruyter, Berlin–New York, 1996, 239–245 | MR | Zbl
[22] Sobczak-Knec M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. M. Curie-Sklodowska. Sectio A. Math., 65:2 (2011), 191–202 | MR | Zbl