Nehari type theorems and uniform local univalence of harmonic mappings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 57-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dealing with the criteria for uniform local univalence of the sense-preserving harmonic in the unit disc of complex plane functions in terms of generalised Schwarzian derivative introduced by R. Hernández and M. J. Martín. The main section is devoted to the proof of conditions of univalence and uniform local univalence by the means of estimation of generalized Schwarzian derivatives and methods of theory of linear-invariant families. The proved criteria are effective in the case of quasiconformal harmonic functions that was confirmed by examples. In the final section some related methods are applied to the harmonic functions associated with the minimal graphs. The estimation of Gaussian curvature of minimal surfases is obtained in the terms of order of associated harmonic function.
Keywords: harmonic mappings, univalence criteria, Schwarzian derivative.
@article{IVM_2019_12_a5,
     author = {S. Yu. Graf},
     title = {Nehari type theorems and uniform local univalence of harmonic mappings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {57--70},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/}
}
TY  - JOUR
AU  - S. Yu. Graf
TI  - Nehari type theorems and uniform local univalence of harmonic mappings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 57
EP  - 70
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/
LA  - ru
ID  - IVM_2019_12_a5
ER  - 
%0 Journal Article
%A S. Yu. Graf
%T Nehari type theorems and uniform local univalence of harmonic mappings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 57-70
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/
%G ru
%F IVM_2019_12_a5
S. Yu. Graf. Nehari type theorems and uniform local univalence of harmonic mappings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 57-70. http://geodesic.mathdoc.fr/item/IVM_2019_12_a5/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[2] Nehari Z., “The Schwarzian derivatives and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[3] Ahlfors L., Weill G., “A uniqueness theorem for Beltrami equations”, Proc. Amer. Math. Soc., 13:6 (1962), 975–978 | DOI | MR | Zbl

[4] Ahlfors L., “Cross-ratios and Schwarzian derivatives in $\mathbb{R}^n$”, Complex Analysis, Articles Dedicated to Albert Pfluger on the Occasion of his 80th Birthday, eds. Hersch J., Huber A., Birkhäuser Verlag, Basel, 1989, 1–15 | MR

[5] Duren P., Harmonic mappings in the plane, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[6] Chuaqui M., Duren P., Osgood B., “The Schwarzian derivative for harmonic mappings”, J. Anal. Math., 91 (2003), 329–351 | DOI | MR | Zbl

[7] Chuaqui M., Duren P., Osgood B., “Univalence criteria for lifts of harmonic mappings to minimal surfaces”, J. Geom. Anal., 17:1 (2007), 49–74 | DOI | MR | Zbl

[8] Nehari Z., “Some criteria of univalence”, Proc. Amer. Math. Soc., 5:5 (1954), 700–704 | DOI | MR | Zbl

[9] Chuaqui M., Duren P., Osgood B., “Schwarzian derivative criteria for valence of analytic and harmonic mappings”, Math. Proc. Camb. Phil. Soc., 143:2 (2007), 473–486 | DOI | MR | Zbl

[10] Hernández R., Martín M. J., “Pre-Schwarzian and Schwarzian derivatives of harmonic mappings”, J. Geom. Anal., 25:1 (2015), 64–91 | DOI | MR | Zbl

[11] Hernández R., Martín M. J., “Criteria for univalence and quasiconformal extension of harmonic mappings in terms of the Schwarzian derivative”, Arch. Math., 104:1 (2015), 53–59 | DOI | MR | Zbl

[12] Graf S.Yu., “On the Schwarzian norm of harmonic mappings”, Probl. Anal. Issues Anal., 5(23):2 (2016), 20–32 | DOI | MR | Zbl

[13] Graf S.Yu., “The Schwarzian derivatives of harmonic functions and univalence conditions”, Probl. Anal. Issues Anal., 6(24):2 (2017), 42–56 | DOI | MR | Zbl

[14] Sheil-Small T., “Constants for planar harmonic mappings”, J. Lond. Math. Soc., 42:2 (1990), 237–248 | DOI | MR | Zbl

[15] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick type inequalities, Birkhäuser Verlag, Basel, 2009 | MR | Zbl

[16] Graf S.Yu., Starkov V. V., Ponnusamy S., “Radii of covering disks for locally univalent harmonic mappings”, Monatsh. Math., 180:3 (2016), 527–548 | DOI | MR | Zbl

[17] Pommerenke Ch., “Linear-invariante Familien analytischer Functionen. I”, Math. Ann., 155:2 (1964), 108–154 | DOI | MR | Zbl

[18] Duren P., Univalent functions, Springer-Verlag, N. Y., 1983 | MR | Zbl

[19] Clunie J., Sheil-Small T., “Harmonic univalent functions”, Ann. Acad. Sci. Fenn. Math., 9 (1984), 3–25 | DOI | MR | Zbl

[20] Wirths K.-J., “Über holomorphe Funktionen, die einer Wachstumsbeschränkung unterliegen”, Archiv der Math., 30:6 (1978), 606–612 | DOI | MR | Zbl

[21] Kayumov I. R., Starkov V. V., “Estimate of logarithmic coefficients of locally univalent functions”, XVIth Rolf Nevanlinna Colloquium, eds. Laine M., de Gruyter, Berlin–New York, 1996, 239–245 | MR | Zbl

[22] Sobczak-Knec M., Starkov V. V., Szynal J., “Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian”, Ann. Univ. M. Curie-Sklodowska. Sectio A. Math., 65:2 (2011), 191–202 | MR | Zbl