Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 37-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions of the approximation of functions from classes $W^r_2(D_{\gamma};(a,b))$, $r=2,3,\ldots,$ by classical orthogonal polynomials have been analyzed in the spaces $L_{2,\gamma}(a,b)$ with a weight $\gamma$. For different widths estimates above and below were obtained on the classes $W^r_2(\Omega_{m,\gamma}, \Psi; (a,b))$, where $r\in \mathbb{Z}_{+}$, $m \in \mathbb{N}$, $\Psi$ is a majorant, $\Omega_{m,\gamma}$ is a generalized modulus of continuity of $m$-th order. The condition on majorant has been indicated when we can to compute the exact values of widths if it be fulfilled. Some concrete examples of the obtained exact results are reduced. Estimates (including exact) of the supremums of Fourier coefficients were obtained on the all indicated classes.
Keywords: classical orthogonal polynom, best polynomial approximation, width, generalized modulus of continuity
Mots-clés : orthonormal polynomial system, majorant, Fourier coefficient.
@article{IVM_2019_12_a3,
     author = {S. B. Vakarchuk},
     title = {Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--51},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a3/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
TI  - Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 37
EP  - 51
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a3/
LA  - ru
ID  - IVM_2019_12_a3
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%T Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 37-51
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a3/
%G ru
%F IVM_2019_12_a3
S. B. Vakarchuk. Approximation by classical orthogonal polynomials with weight in spaces $L_{2,\gamma}(a,b)$ and widths of some functional classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 37-51. http://geodesic.mathdoc.fr/item/IVM_2019_12_a3/