Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an example of a one-parameter family of quadratic endomorphisms of the plane, in which a closed invariant curve is born from an elliptic fixed point.
Keywords: invariant curve, fixed point, endomorphism of a plane.
@article{IVM_2019_12_a1,
     author = {S. S. Bel'mesova},
     title = {Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--24},
     publisher = {mathdoc},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/}
}
TY  - JOUR
AU  - S. S. Bel'mesova
TI  - Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 16
EP  - 24
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/
LA  - ru
ID  - IVM_2019_12_a1
ER  - 
%0 Journal Article
%A S. S. Bel'mesova
%T Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 16-24
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/
%G ru
%F IVM_2019_12_a1
S. S. Bel'mesova. Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/

[1] Avishai Y., Berend D., “Transmission through a Thue-Morse chain”, Phys. Review B, 45 (1992), 2717–2724 | DOI

[2] Avishai Y., Berend D., Tkachenko V., “Trace maps”, J. Modern Phys. B, 11:30 (1997), 3525–3542 | DOI | MR | Zbl

[3] Belmesova S. S., Efremova L. S., “Ob odnoparametricheskom semeistve kvadratichnykh otobrazhenii ploskosti”, Tr. 50-i konferentsii MFTI «Sovremen. probl. fundamentalnykh i prikl. nauk», Ch. VII, v. 1, 2007, 8–11

[4] Belmesova S. S., Efremova L. S., “O neogranichennykh traektoriyakh odnogo kvadratichnogo otobrazheniya ploskosti”, Tr. mezhdunar. konf. po differents. ur. i dinam. sist. (Suzdal, 2006), v. 1, Sovremen. matem. i ee prilozh., 53, AN Gruzii, in-t kibernetiki, Tbilisi, 2008, 48–57

[5] Bel'mesova S. S., Efremova L. S., “On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map”, Nonlinear maps and their appl., 112 (2015), 127–158 | MR | Zbl

[6] Efremova L. S., “The trace map and integrability of the multifunctions”, J. Phys.: Conf. Ser., 990, conf. 1 (2018), 0120103 | DOI | MR

[7] Bel'mesova S. S., Efremova L. S., Fournier-Prunaret D., “Invariant curves of quadratic maps of the plane from the one-parameter family containing the trace map”, ESAIM: Proceedings and surveys, 46 (2014), 98–110 | DOI | MR | Zbl

[8] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[9] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[10] Kuznetsov Yuri A., Elements of applied bifurcation theory, Springer, N. Y., 1998 | MR | Zbl

[11] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1976

[12] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980