Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_12_a1, author = {S. S. Bel'mesova}, title = {Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--24}, publisher = {mathdoc}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/} }
TY - JOUR AU - S. S. Bel'mesova TI - Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 16 EP - 24 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/ LA - ru ID - IVM_2019_12_a1 ER -
%0 Journal Article %A S. S. Bel'mesova %T Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 16-24 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/ %G ru %F IVM_2019_12_a1
S. S. Bel'mesova. Bifurcation of the birth of a closed invariant curve in a one-parameter family of quadratic mappings of the plane. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2019), pp. 16-24. http://geodesic.mathdoc.fr/item/IVM_2019_12_a1/
[1] Avishai Y., Berend D., “Transmission through a Thue-Morse chain”, Phys. Review B, 45 (1992), 2717–2724 | DOI
[2] Avishai Y., Berend D., Tkachenko V., “Trace maps”, J. Modern Phys. B, 11:30 (1997), 3525–3542 | DOI | MR | Zbl
[3] Belmesova S. S., Efremova L. S., “Ob odnoparametricheskom semeistve kvadratichnykh otobrazhenii ploskosti”, Tr. 50-i konferentsii MFTI «Sovremen. probl. fundamentalnykh i prikl. nauk», Ch. VII, v. 1, 2007, 8–11
[4] Belmesova S. S., Efremova L. S., “O neogranichennykh traektoriyakh odnogo kvadratichnogo otobrazheniya ploskosti”, Tr. mezhdunar. konf. po differents. ur. i dinam. sist. (Suzdal, 2006), v. 1, Sovremen. matem. i ee prilozh., 53, AN Gruzii, in-t kibernetiki, Tbilisi, 2008, 48–57
[5] Bel'mesova S. S., Efremova L. S., “On the concept of integrability for discrete dynamical systems. Investigation of wandering points of some trace map”, Nonlinear maps and their appl., 112 (2015), 127–158 | MR | Zbl
[6] Efremova L. S., “The trace map and integrability of the multifunctions”, J. Phys.: Conf. Ser., 990, conf. 1 (2018), 0120103 | DOI | MR
[7] Bel'mesova S. S., Efremova L. S., Fournier-Prunaret D., “Invariant curves of quadratic maps of the plane from the one-parameter family containing the trace map”, ESAIM: Proceedings and surveys, 46 (2014), 98–110 | DOI | MR | Zbl
[8] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[9] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[10] Kuznetsov Yuri A., Elements of applied bifurcation theory, Springer, N. Y., 1998 | MR | Zbl
[11] Shabat B. V., Vvedenie v kompleksnyi analiz, v. II, Nauka, M., 1976
[12] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980