Large deflections of viscoelastic panels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem of large, including supercritical, deflections of viscoelastic panels loaded with a transverse distributed load or a concentrated force, including panels obtained by pre-bending the plates by compressing them. In addition to bending deformations, transverse shear is taken into account. The system of static and kinematic relations in the elastic formulation is reduced to a single resolving nonlinear equation with respect to the deflection, examples of numerical calculations are given. Taking into account the fact that in fibrous materials the creep of the material is manifested mainly in shear, the solution obtained is generalized to the case of linearly viscoelastic panels.
Mots-clés : composite
Keywords: panel, buckling, shear, supercritical bending, nonlinear equation, viscoelasticity.
@article{IVM_2019_11_a9,
     author = {R. A. Kayumov and B. F. Tazyukov and I. Z. Muhamedova and F. R. Shakirzyanov},
     title = {Large deflections of viscoelastic panels},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--86},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a9/}
}
TY  - JOUR
AU  - R. A. Kayumov
AU  - B. F. Tazyukov
AU  - I. Z. Muhamedova
AU  - F. R. Shakirzyanov
TI  - Large deflections of viscoelastic panels
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 80
EP  - 86
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a9/
LA  - ru
ID  - IVM_2019_11_a9
ER  - 
%0 Journal Article
%A R. A. Kayumov
%A B. F. Tazyukov
%A I. Z. Muhamedova
%A F. R. Shakirzyanov
%T Large deflections of viscoelastic panels
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 80-86
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a9/
%G ru
%F IVM_2019_11_a9
R. A. Kayumov; B. F. Tazyukov; I. Z. Muhamedova; F. R. Shakirzyanov. Large deflections of viscoelastic panels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 80-86. http://geodesic.mathdoc.fr/item/IVM_2019_11_a9/

[1] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[2] Volmir A. S., Ustoichivost uprugikh sistem, Fizmatgiz, M., 1963

[3] Alfutov N. A., Osnovy rascheta na ustoichivost uprugikh sistem, Mashinostroenie, M., 1978 | MR

[4] Kornishin M. S., Mushtari Kh. M., “Ustoichivost beskonechno dlinnoi pologoi tsilindricheskoi paneli pod deistviem normalnogo ravnomernogo davleniya”, Izv. KFAN SSSR, Ser. fiz.-matem i tekhn. nauk, 1955, no. 7, 36–50

[5] Kayumov R. A., Tazyukov B. F., “Ustoichivost izognutoi tonkoi uprugoi plastiny, nagruzhennoi poperechnoi siloi”, Izv. vuzov. Aviatsionnaya tekhnika, 2001, no. 4, 12–15

[6] Paimushin V. N., “Problemy geometricheskoi nelineinosti i ustoichivosti v mekhanike tonkikh obolochek i pryamolineinykh sterzhnei s pryamolineinoi osyu”, Prikl. matem. i mekhan., 71:5 (2007), 855–893 | MR

[7] Kayumov R. A., “Zakriticheskoe povedenie szhatykh sterzhnei v uprugoi srede”, Izv. RAN. Mekhan. tverd. tela, 2017, no. 5, 122–129

[8] Paimushin V. N., Shalashilin V. I., “Geometrically non-linear equations in the theory of momentless shells with applications to problems on the non-classical forms of loss of stability of a cylinder”, J. Appl. Math. and Mech., 70:1 (2006), 91–101 | DOI | MR

[9] Paimushin V. N., Kayumov R. A., Kholmogorov S. A., “Deformation features and models of $[\pm45]2s$ cross-ply fiber-reinforced plastics in tension”, Mech. Composite Materials, 55:2 (2019), 205–224 | DOI

[10] Dumanskii A. M., Ruslantsev A. N., Tairova L. P., “Model nelineinogo deformirovaniya ugleplastikov”, Konstruktsii iz kompozits. mater., 2013, no. 4 (132), 6–12