On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 76-79
Cet article a éte moissonné depuis la source Math-Net.Ru
It is considered the problem of constructing a singular perturbation of the semigroup of shifts on the algebra of canonical anticommutation relations.
Keywords:
quantum Markovian master equation, the semigroup of shifts on the algebra of canonical anticommutation relations.
@article{IVM_2019_11_a8,
author = {G. G. Amosov and E. O. Kholmogorov},
title = {On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--79},
year = {2019},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a8/}
}
TY - JOUR AU - G. G. Amosov AU - E. O. Kholmogorov TI - On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2019 SP - 76 EP - 79 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2019_11_a8/ LA - ru ID - IVM_2019_11_a8 ER -
%0 Journal Article %A G. G. Amosov %A E. O. Kholmogorov %T On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2019 %P 76-79 %N 11 %U http://geodesic.mathdoc.fr/item/IVM_2019_11_a8/ %G ru %F IVM_2019_11_a8
G. G. Amosov; E. O. Kholmogorov. On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 76-79. http://geodesic.mathdoc.fr/item/IVM_2019_11_a8/
[1] Holevo A. S., “On dissipative stochastic equations in a Hilbert space”, Probab. Theory Relat. Fields, 104:4 (1996), 483–500 | DOI | MR | Zbl
[2] Holevo A. S., “On singular perturbations of quantum dynamical semigroups”, Math. Notes, 103:1–2 (2018), 133–144 | DOI | MR | Zbl
[3] Bratteli O., Robinson D., Operator algebras and quantum statistical mechanics, v. 2, Springer, Berlin, 2002 | MR
[4] Evans D. E., “Completely positive quasi-free maps on the CAR algebra”, Commun. Math. Phys., 70:1 (1979), 53–68 | DOI | MR | Zbl