On Pauli's theorem in Clifford algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 16-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Clifford algebras we investigate the Pauli theorem. An algorithm for costructing the Pauli operator is given. It is shown that the problem of constructiing the Pauli operator is connected with the problem of zero divisors in Clifford algebras.
Keywords: Clifford algebra, Pauli theorem, zero divisor, inverse operator.
Mots-clés : commutation coefficient
@article{IVM_2019_11_a2,
     author = {S. P. Kuznetsov and V. V. Mochalov and V. P. Chuev},
     title = {On {Pauli's} theorem in {Clifford} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--31},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a2/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
AU  - V. V. Mochalov
AU  - V. P. Chuev
TI  - On Pauli's theorem in Clifford algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 16
EP  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a2/
LA  - ru
ID  - IVM_2019_11_a2
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%A V. V. Mochalov
%A V. P. Chuev
%T On Pauli's theorem in Clifford algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 16-31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a2/
%G ru
%F IVM_2019_11_a2
S. P. Kuznetsov; V. V. Mochalov; V. P. Chuev. On Pauli's theorem in Clifford algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 16-31. http://geodesic.mathdoc.fr/item/IVM_2019_11_a2/

[1] Lounesto P., Clifford Algebras and Spinors, Cambridge Univ. Press, 2001 | MR | Zbl

[2] Marchuk N. G., Shirokov D. S., Vvedenie v teoriyu algebr Klifforda, Fazis, M., 2012

[3] Marchuk N. G., “Demonstratsionnoe predstavlenie i tenzornye proizvedeniya algebr Klifforda”, Tr. matem. in-ta im. V.A. Steklova, 290, 2015, 154–165 | DOI | Zbl

[4] Shirokov D. S., “Obobschenie teoremy Pauli na sluchai algebr Klifforda”, Dokl. RAN, 440:5 (2011), 607–610 | Zbl

[5] Shirokov D. S., “Obobschenie teoremy Pauli na sluchai algebr Klifforda. Nanostruktury”, Matem. fiz. i modelirovanie, 9:1 (2013), 93–104

[6] Shirokov D. S., “Calculations of elements of spin groups using generalized Pauli's theorem”, Adv. in Appl. Clifford Algebras, 25:1 (2015), 227–244 | DOI | MR | Zbl

[7] Shirokov D. S., Method of generalized Reynolds operators and Pauli's theorem in Clifford algebras, 2014, 14 pp., arXiv: 1409.8163v2 [math-ph] | MR

[8] Shirokov D. S., “Teorema Pauli pri opisanii $n$-mernykh spinorov v formalizme algebr Klifforda”, TMF, 175:1 (2013), 11–34 | DOI | Zbl

[9] Shirokov D. S., “Ispolzovanie obobschennoi teoremy Pauli dlya nechetnykh elementov algebry Klifforda dlya analiza svyazei mezhdu spinornymi i ortogonalnymi gruppami proizvolnykh razmernostei”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz-matem. nauki, 2013, no. 1(30), 279–287 | DOI

[10] Shirokov D. S., “Method of averaging in Clifford Algebras”, Adv. in Appl. Clifford Algebras, 27:1 (2017), 149–163, arXiv: 1412.0246 [math-ph] | DOI | MR | Zbl

[11] Ivanitskii A. Yu., Kuznetsov S. P., Mochalov V. V., Chuev V. P., “Obratnye elementy i deliteli nulya v algebrakh Klifforda i Grassmana”, Vestn. Chuvashsk. un-ta, Informatika, vychisl. tekhnika i upravlenie, 2017, no. 3, 207–221

[12] Burlakov M. P., Pokazeev V. V., Freidenzon L. E., Kliffordov analiz. 1. $B$-algebry Klifforda, Dep. v VINITI 11.03.88, No 1959, Checheno-Ingushsk. un-t, Groznyi, 1988, 22 pp.

[13] Kuznetsov S. P., Mochalov V. V., “Avtomorfizmy algebry Klifforda i silno regulyarnye funktsii”, Izv. vuzov. Matem., 1992, no. 10, 83–86

[14] Kuznetsov S. P., Mochalov V. V., “Predstavlenie operatora Laplasa i silno regulyarnye funktsii v algebrakh Klifforda”, Aktualnye zadachi matem. i mekhan., Izd-vo Chuvashsk. un-ta, Cheboksary, 1995, 56–70