Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 94-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to approximate calculation of integrals of products of two functions by the method of tensor products of functionals. Under the assumption that one of them is from the Sobolev class with the dominant mixed derivative, and the other with fast oscillation, there are obtained unimprovable (in the sense of order) estimates of arising errors of approximation. Also, a comparative analysis with known methods in the "theory of oscillations" be conducted.
Keywords: tensor product of functionals, Haar function, highly oscillatory integral, asymptotic method, Filon method, Levin collocation method.
@article{IVM_2019_11_a11,
     author = {N. Temirgaliyev and S. S. Kudaibergenov and N. Zh. Nauryzbaev},
     title = {Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--99},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a11/}
}
TY  - JOUR
AU  - N. Temirgaliyev
AU  - S. S. Kudaibergenov
AU  - N. Zh. Nauryzbaev
TI  - Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 94
EP  - 99
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a11/
LA  - ru
ID  - IVM_2019_11_a11
ER  - 
%0 Journal Article
%A N. Temirgaliyev
%A S. S. Kudaibergenov
%A N. Zh. Nauryzbaev
%T Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 94-99
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a11/
%G ru
%F IVM_2019_11_a11
N. Temirgaliyev; S. S. Kudaibergenov; N. Zh. Nauryzbaev. Orderly exact calculation of integrals of products of functions by the method of tenzor products of functionals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 94-99. http://geodesic.mathdoc.fr/item/IVM_2019_11_a11/

[1] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl

[2] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | Zbl

[3] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | Zbl

[4] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | Zbl

[5] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | Zbl

[6] Bykovskii V. A., O pravilnom poryadke pogreshnosti optimalnykh kubaturnykh formul v prostranstve s dominiruyuschei proizvodnoi i kvadratichnykh otkloneniyakh setok, Preprint, No 23, VTs DVNTs AN SSSR, Vladivostok, 1985, 31 pp.

[7] Temlyakov V. N., “Ob odnom prieme polucheniya otsenok snizu pogreshnostei kvadraturnykh formul”, Matem. sb., 181:10 (1990), 1403–1413

[8] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. MGU. Ser. matem., mekh., 1959, no. 4, 3–18

[9] Frolov K. K., “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, Dokl. AN SSSR, 231:4 (1976), 818–821 | Zbl

[10] Deaño A., Huybrechs D., Iserles A., Computing Highly Oscillatory Integrals, Society for Industrial and Appl. Math., Philadelphia, 2017 | MR

[11] Iserles A., “On the numerical quadrature of highly-oscillatory integrals. I: Fourier transforms”, IMA J. Num. Anal., 24:3 (2004), 365–391 | DOI | MR | Zbl

[12] Iserles A., “On the numerical quadrature of highly-oscillatory integrals. II: Irregular oscillators”, IMA J. Num. Anal., 25:1 (2005), 25–44 | DOI | MR | Zbl

[13] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[14] Filon L. N.G., “On a quadrature formula for trigonometric integrals”, Proc. Roy. Soc. Edinburgh, 49 (1928), 38–47 | DOI

[15] Zhileikin Ya. M., Kukarkin A. B., “Ob optimalnom vychislenii integralov ot bystroostsilliruyuschikh funktsii”, Zh. vychisl. matem. i matem. fiz., 18:2 (1978), 294–301 | MR

[16] Lokutsievskii O. V., Gavrilov M. B., Nachala chislennogo analiza, TOO “Yanus”, M., 1995

[17] Taugynbaeva G. E., O predelnoi pogreshnosti netochnoi informatsii pri optimalnom vosstanovlenii, PhD dissertatsiya, Almaty, 2014

[18] Levin D., “Procedures for computing one-and-two dimensional integrals of functions with rapid irregular oscillations”, Math. Comp., 38:158 (1982), 531–538 | DOI | MR | Zbl

[19] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure ivz adachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | Zbl

[20] Temirgaliev N., Nauryzbaev N. Zh., Shomanova A. A., “Approksimativnye vozmozhnosti vychislitelnykh agregatov “tipa Smolyaka” s yadrami Dirikhle, Feiera i Valle-Pussena v shkale klassov Ulyanova”, Izv. vuzov. Matem., 2015, no. 7, 75–81 | Zbl

[21] Ma Y., Xu Y., Computing highly oscillatory integrals, 2 Jul. 2015, arXiv: 1507.00641v1[math.AN] | MR