Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2019_11_a1, author = {A. I. Vagabov}, title = {Regularity of a problem of $3n$-th order with decaying boundary-value conditions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--15}, publisher = {mathdoc}, number = {11}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/} }
A. I. Vagabov. Regularity of a problem of $3n$-th order with decaying boundary-value conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 10-15. http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/
[1] Pechentsov A. S., “Kraevye zadachi dlya differentsialnykh uravnenii, soderzhaschikh parametr, s kratnymi kornyami kharakteristicheskogo uravneniya”, Differents. uravneniya, 20:2 (1984), 263–273 | MR | Zbl
[2] Omarov M. Sh., Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii chetvertogo poryadka s kratnymi kharakteristikami, Diss. ... kand. fiz.-matem. nauk, Makhachkala, 1997, 66 pp.
[3] Vagabov A. I., $N$-kratnaya formula razlozheniya v ryady Fure po kornevym elementam differentsialnogo puchka s $n$-kratnoi kharakteristikoi, 52:5 (2016), 555–560 | Zbl
[4] Vagabov A. I., “Zadacha bazisnosti kornevykh funktsii differentsialnogo puchka s $2n$-go poryadka s $n$-kratnymi kharakteristikami”, Matem. fizika i kompyut. modelir., 21:1 (2018), 5–10 | MR
[5] Vagabov A. I., “O ravnoskhodimosti razlozhenii v trigonometricheskii ryad Fure i po glavnym funktsiyam obyknovennykh differentsialnykh operatorov”, Izv. AN SSSR. Ser. Matem., 48:3 (1984), 614–630 | MR | Zbl
[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969