Regularity of a problem of $3n$-th order with decaying boundary-value conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the interval $(0, 1)$ we consider a differential beam with three $n$-fold characteristic roots and decaying boundary conditions, only one of which is assigned to the end $1$. The problem of decomposition of a $3n$-fold continuously differentiable function into a Fourier series by the root elements of the beam is solved. The studied problem essentially generalizes the previous considerations which concerned only relatively simple cases of sheaves with one and two $n$-fold characteristic roots. New methods are used in estimating the resolvent of the problem.
Keywords: Cauchy function, multiple root, Green function, Fourier series.
@article{IVM_2019_11_a1,
     author = {A. I. Vagabov},
     title = {Regularity of a problem of $3n$-th order with decaying boundary-value conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--15},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/}
}
TY  - JOUR
AU  - A. I. Vagabov
TI  - Regularity of a problem of $3n$-th order with decaying boundary-value conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 10
EP  - 15
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/
LA  - ru
ID  - IVM_2019_11_a1
ER  - 
%0 Journal Article
%A A. I. Vagabov
%T Regularity of a problem of $3n$-th order with decaying boundary-value conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 10-15
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/
%G ru
%F IVM_2019_11_a1
A. I. Vagabov. Regularity of a problem of $3n$-th order with decaying boundary-value conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 10-15. http://geodesic.mathdoc.fr/item/IVM_2019_11_a1/

[1] Pechentsov A. S., “Kraevye zadachi dlya differentsialnykh uravnenii, soderzhaschikh parametr, s kratnymi kornyami kharakteristicheskogo uravneniya”, Differents. uravneniya, 20:2 (1984), 263–273 | MR | Zbl

[2] Omarov M. Sh., Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii chetvertogo poryadka s kratnymi kharakteristikami, Diss. ... kand. fiz.-matem. nauk, Makhachkala, 1997, 66 pp.

[3] Vagabov A. I., $N$-kratnaya formula razlozheniya v ryady Fure po kornevym elementam differentsialnogo puchka s $n$-kratnoi kharakteristikoi, 52:5 (2016), 555–560 | Zbl

[4] Vagabov A. I., “Zadacha bazisnosti kornevykh funktsii differentsialnogo puchka s $2n$-go poryadka s $n$-kratnymi kharakteristikami”, Matem. fizika i kompyut. modelir., 21:1 (2018), 5–10 | MR

[5] Vagabov A. I., “O ravnoskhodimosti razlozhenii v trigonometricheskii ryad Fure i po glavnym funktsiyam obyknovennykh differentsialnykh operatorov”, Izv. AN SSSR. Ser. Matem., 48:3 (1984), 614–630 | MR | Zbl

[6] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969