The construction of a production function from the restriction to the simplex
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions for a function defined on a standard simplex in $\mathbb R^n$, for which its $\alpha$-homogeneous extension to a nonnegative orthant has the properties of a production function (nondecreasing for all variables, concavity). We study some standard functions on a simplex for the first property.
Keywords: production function, nondecreasing, concavity.
Mots-clés : simplex
@article{IVM_2019_11_a0,
     author = {E. M. Bronshtein},
     title = {The construction of a production function from the restriction to the simplex},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/}
}
TY  - JOUR
AU  - E. M. Bronshtein
TI  - The construction of a production function from the restriction to the simplex
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 9
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/
LA  - ru
ID  - IVM_2019_11_a0
ER  - 
%0 Journal Article
%A E. M. Bronshtein
%T The construction of a production function from the restriction to the simplex
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-9
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/
%G ru
%F IVM_2019_11_a0
E. M. Bronshtein. The construction of a production function from the restriction to the simplex. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/

[1] Kleiner G. B., Proizvodstvennye funktsii. Teoriya, metody, primenenie, Finansy i statistika, M., 1986

[2] Neiman Dzh. fon, Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970

[3] Gorbunov V. K., Lvov A. G., “Postroenie proizvodstvennykh funktsii po dannym ob investitsiyakh”, Ekonom. i matem. metody, 48:2 (2012), 95–107

[4] Gorbunov V. K., “Analytical representation of concave and quasiconcave homogeneous functions”, Optimization: J. Mathem. Progr. and Oper. Res., 66:4 (2017), 507–519 | MR | Zbl