The construction of a production function from the restriction to the simplex
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain conditions for a function defined on a standard simplex in $\mathbb R^n$, for which its $\alpha$-homogeneous extension to a nonnegative orthant has the properties of a production function (nondecreasing for all variables, concavity). We study some standard functions on a simplex for the first property.
Keywords:
production function, nondecreasing, concavity.
Mots-clés : simplex
Mots-clés : simplex
@article{IVM_2019_11_a0,
author = {E. M. Bronshtein},
title = {The construction of a production function from the restriction to the simplex},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
year = {2019},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/}
}
E. M. Bronshtein. The construction of a production function from the restriction to the simplex. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2019), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2019_11_a0/
[1] Kleiner G. B., Proizvodstvennye funktsii. Teoriya, metody, primenenie, Finansy i statistika, M., 1986
[2] Neiman Dzh. fon, Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970
[3] Gorbunov V. K., Lvov A. G., “Postroenie proizvodstvennykh funktsii po dannym ob investitsiyakh”, Ekonom. i matem. metody, 48:2 (2012), 95–107
[4] Gorbunov V. K., “Analytical representation of concave and quasiconcave homogeneous functions”, Optimization: J. Mathem. Progr. and Oper. Res., 66:4 (2017), 507–519 | MR | Zbl