Projective group properties of $h$-spaces of type $\{221\}$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 87-93
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate the curvature of a 5-dimensional $h$-space $H_{221} $ of the type $\{221\}$ [3], necessary and sufficient conditions are obtained in order that $ H_ {221} $ be a space of constant curvature $K$ (theorem 1). A general solution of the Eisenhart equation is found in the $h$-space $H_ {221}$ of non-constant curvature. The necessary and sufficient conditions for the existence of non-homothetical projective motion in the $h$-space $ H_{221} $ of non-constant curvature are established (theorem 5) and, as a consequence, the structure of the non-homothetical projective Lie algebra in such a space is determined (theorem 6).
Keywords:
five-dimensional pseudo-Riemannian manifold, the Eisenhart equation, projective Lie algebra, $h$-space of the type $\{221 \}$.
@article{IVM_2019_10_a8,
author = {A. V. Aminova and D. R. Khakimov},
title = {Projective group properties of $h$-spaces of type $\{221\}$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {87--93},
year = {2019},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a8/}
}
A. V. Aminova; D. R. Khakimov. Projective group properties of $h$-spaces of type $\{221\}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2019_10_a8/
[1] Aminova A. V., Proektivnye preobrazovaniya psevdorimanovykh mnogoobrazii, Yanus-K, M., 2003
[2] Aminova A. V., “Algebry Li infinitezimalnykh proektivnykh preobrazovanii lorentsevykh mnogoobrazii”, UMN, 50:1 (1995), 69–142 | Zbl
[3] Aminova A. V., Khakimov D. R., “O proektivnykh dvizheniyakh pyatimernykh prostranstv spetsialnogo vida”, Izv. vuzov. Matem., 2017, no. 5, 1–7
[4] Schur F., “Über den Zusammenhang der Räume konstanter Krümmungsmasses mit den projectiven Raumen”, Math. Ann., 27 (1886), 537–567 | MR