The second initial-boundary value problem for a $B$-hyperbolic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 75-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate an initial-boundary value problem in a rectangular domain for a hyperbolic equation with Bessel operator. The solution is obtained in the form of the Fourier–Bessel series. The uniqueness of solution of the problem is established by means of the method of integral identities. At the existence of the proof we use assessment of coefficients of series, the asymptotic formula for Bessel function and asymptotic formula for eigenvalues. We obtain sufficient conditions on the functions defining initial data of the problem and prove the stability theorem for the solution of the problem.
Keywords: hyperbolic equation, Bessel differential operator, initial-boundary value problem, uniqueness, Fourier–Bessel series, stability.
Mots-clés : existence, uniform convergence
@article{IVM_2019_10_a7,
     author = {K. B. Sabitov and N. V. Zaitseva},
     title = {The second initial-boundary value problem for a $B$-hyperbolic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--86},
     publisher = {mathdoc},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a7/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - N. V. Zaitseva
TI  - The second initial-boundary value problem for a $B$-hyperbolic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 75
EP  - 86
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_10_a7/
LA  - ru
ID  - IVM_2019_10_a7
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A N. V. Zaitseva
%T The second initial-boundary value problem for a $B$-hyperbolic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 75-86
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_10_a7/
%G ru
%F IVM_2019_10_a7
K. B. Sabitov; N. V. Zaitseva. The second initial-boundary value problem for a $B$-hyperbolic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 75-86. http://geodesic.mathdoc.fr/item/IVM_2019_10_a7/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77:2 (1951), 181–183 | Zbl

[2] Weinstein A., “Discontinuous integrals and generalized theory of potential”, Trans. Amer. Math. Soc., 63:2 (1948), 342–354 | MR | Zbl

[3] Weinstein A., “Generalized axially symmetric potential theory”, Bull. Amer. Math. Soc., 59 (1953), 20–38 | MR | Zbl

[4] Bers L., “On a class of differential equations in mechanics of continua”, Quart. Appl. Math., 5:1 (1943), 168–188 | MR

[5] Bers L., “A remark on an applications of pseudo-analytic functions”, Amer. J. Math., 78:3 (1956), 486–496 | MR | Zbl

[6] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Amer. Math. Soc., 56 (1944), 67–93 | MR | Zbl

[7] Gilbert R. P., Function theoretic method in partial differential equations, Academic Press, New York–London, 1969 | MR

[8] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979

[9] Bitsadze A. V., Pashkovskii V. I., “K teorii uravnenii Maksvella–Einshteina”, DAN SSSR, 216:2 (1974), 9–10

[10] Bitsadze A. V., Pashkovskii V. I., “O nekotorykh klassakh reshenii uravneniya Maksvella–Einshteina”, Tr. MIAN SSSR, 134, 1975, 26–30 | Zbl

[11] Dzhayani G. V., Reshenie nekotorykh zadach dlya odnogo vyrozhdayuschegosya ellipticheskogo uravneniya i ikh prilozheniya k prizmaticheskim obolochkam, Izd-vo Tbilis. un-ta, Tbilisi, 1982

[12] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, Fizmatlit, M., 1997

[13] Carroll R. W., Showalter R. E., Singular and degenerate Cauchy problems, Academic Press, New York, 1976 | MR

[14] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovremennaya matem. Fundament. napravleniya, 64, no. 2, 2018, 211–426

[15] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vyssh. shkola, M., 1970

[16] Pulkin S. P., “Nekotorye kraevye zadachi dlya uravnenii $u_{xx}\pm u_{yy}+\frac{p}{x}u_x=0$”, Uchen. zap. Kuibyshevsk. gos. pedagogicheskogo in-ta, 1958, no. 21, 3–55

[17] Sabitov K. B., Ilyasov R. R., “O nekorrektnosti kraevykh zadach dlya odnogo klassa giperbolicheskikh uravnenii”, Izv. vuzov. Matem., 2001, no. 5, 59–63

[18] Sabitov K. B., Ilyasov R. R., “Reshenie zadachi Trikomi dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom spektralnym metodom”, Izv. vuzov. Matem., 2004, no. 2, 64–71 | MR | Zbl

[19] Safina R. M., “Zadacha Keldysha dlya uravneniya smeshannogo tipa vtorogo roda s operatorom Besselya”, Differents. uravneniya, 51:10 (2015), 1354–1366 | Zbl

[20] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN. Ser. matem., 82:2 (2018), 79–112 | MR | Zbl

[21] Zaitseva N. V., “Keldysh type problem for $B$-hyperbolic equation with integral boundary value condition of the first kind”, Lobachevskii J. Math., 38:1 (2017), 162–169 | MR | Zbl

[22] Sabitov K. B., Zaitseva N. V., “Nachalnaya zadacha dlya $B$-giperbolicheskogo uravneniya s integralnym usloviem vtorogo roda”, Differents. uravneniya, 54:1 (2018), 123–135

[23] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | Zbl

[24] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014

[25] Vatson G. N., Teoriya Besselevykh funktsii, v. 1, IL, M., 1949

[26] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Mir, 1986

[27] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Izd. 4-e, Nauka, Fizmatlit, M., 1981

[28] Sabitov K. B., Vagapova E. V., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya v pryamougolnoi oblasti”, Differents. uravneniya, 49:1 (2013), 68–78 | MR | Zbl

[29] Sabitov K. B., Zaitseva N. V., “Initial-boundary value problem for hyperbolic equation with singular coefficient and integral condition of second kind”, Lobachevskii J. Math., 39:9 (2018), 1419–1427 | MR | Zbl