The triangle equality in Hilbert $A$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 38-45
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that for any two elements
$x$, $y$ of Hilbert $A$-module $M$ over local $C^*$-algebra $A$ the
generalized triangle equality $|x+y|=|x|+|y|$ holds if and only if
$\langle x,y\rangle=|x||y|$.
Keywords:
local $C^{\ast}$-algebra, Hilbert $A$-module, local Hilbert space, module compact operator, triangle equality.
Mots-clés : $\ast$-homomorphism
Mots-clés : $\ast$-homomorphism
@article{IVM_2019_10_a4,
author = {A. V. Kalinichenko and M. A. Pliev},
title = {The triangle equality in {Hilbert} $A$-modules},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {38--45},
publisher = {mathdoc},
number = {10},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/}
}
A. V. Kalinichenko; M. A. Pliev. The triangle equality in Hilbert $A$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 38-45. http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/