The triangle equality in Hilbert $A$-modules
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 38-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for any two elements $x$, $y$ of Hilbert $A$-module $M$ over local $C^*$-algebra $A$ the generalized triangle equality $|x+y|=|x|+|y|$ holds if and only if $\langle x,y\rangle=|x||y|$.
Keywords: local $C^{\ast}$-algebra, Hilbert $A$-module, local Hilbert space, module compact operator, triangle equality.
Mots-clés : $\ast$-homomorphism
@article{IVM_2019_10_a4,
     author = {A. V. Kalinichenko and M. A. Pliev},
     title = {The triangle equality in {Hilbert} $A$-modules},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--45},
     publisher = {mathdoc},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/}
}
TY  - JOUR
AU  - A. V. Kalinichenko
AU  - M. A. Pliev
TI  - The triangle equality in Hilbert $A$-modules
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 38
EP  - 45
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/
LA  - ru
ID  - IVM_2019_10_a4
ER  - 
%0 Journal Article
%A A. V. Kalinichenko
%A M. A. Pliev
%T The triangle equality in Hilbert $A$-modules
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 38-45
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/
%G ru
%F IVM_2019_10_a4
A. V. Kalinichenko; M. A. Pliev. The triangle equality in Hilbert $A$-modules. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 38-45. http://geodesic.mathdoc.fr/item/IVM_2019_10_a4/

[1] Bakherad M., Moslehian M. S., “Reversees and variations of Heinz inequality”, Linear and Multilinear Algebra, 63:10 (2015), 1972–1980 | MR | Zbl

[2] Dadkhah A., Moslehian M. S., “Gruss type inequalities for positive linear maps in $C^*$-algebras”, Linear and Multilinear Algebra, 65:7 (2017), 1386–1401 | MR | Zbl

[3] Li X., Wu W., “Operator's Jensen inequality on $C^*$-algebras”, Acta Math. Sinica, 30:1 (2014), 35–50 | MR | Zbl

[4] Hart R., “The triangle inequality in $C^*$-algebras”, Filomat, 20 (2006), 51–53 | MR | Zbl

[5] Thompson R. C., “Convex and concave functions of singular values of matrix sums”, Pacific J. Math., 82 (1979), 279–280 | MR | Zbl

[6] Ando T., Hayashi A., “A characterization of the operator-valued triangle equality”, J. Operator Theory, 58:2 (2007), 463–468 | MR | Zbl

[7] Arambasic L., Rajic R., “On the $C^*$-valued triangle equality and inequality in Hilbert $C^{*}$-modules”, Acta Math. Hungar, 119:4 (2008), 373–380 | MR | Zbl

[8] Merfi D., $C^{*}$-algebry i teoriya operatorov, Faktorial, M., 1997

[9] Fragoulopoulou M., Topological algebras with involution, Elsevier, 2005 | MR | Zbl

[10] Joiţa M., Hilbert modules over locally $C^{*}$-algebras, Univ. Bucharest Press, 2006 | MR

[11] Maliev I. N., Pliev M. A., “O predstavlenii tipa Stainspringa dlya operatorov v gilbertovykh modulyakh nad lokalnymi $C^{*}$-algebrami”, Izv. vuzov. Matem., 2012, no. 12, 51–58

[12] Pliev M. A., Tsopanov I. D., “O predstavlenii tipa Stainspringa dlya $n$-naborov vpolne polozhitelnykh otobrazhenii v gilbertovykh $C^*$-modulyakh”, Izv. vuzov. Matem., 2014, no. 11, 42–49

[13] Masaev H. M., Pliev M. A., Elsaev Y. V., “Radon–Nikodym type theorem for a covariant completely positive maps on Hilbert C*-modules”, Int. J. Math. Anal., 9:5 (2015), 1723–1731 | MR

[14] Moslehian M. S., Kusraev A., Pliev M., “Matrix KSGNS construction and a Radon–Nikodym type theorem”, Indag. Math., 28:5 (2017), 938–952 | MR | Zbl

[15] Inoue A., “Locally $C^{*}$-algebras”, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25 (1971), 197–235 | MR | Zbl

[16] Joiţa M., “On the linking algebra of Hilbert modules and Morita equivalence of locally $C^{*}$-algebras”, Survey Math. and Appl., 1 (2006), 23–32 | MR | Zbl