Dirichlet problem in parallelepiped for elliptic equation with three singular coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

For analog Helmholz biaxisymmetric equation for the case of three variable, we consider Dirichlet problem in parallelepiped. We prove uniqueness of Dirichlet problem solution using spectral analysis methods. We construct the Dirichlet problem solution as double series. In constructing the solutions we use Fourier–Bessel series. We find boundary function the conditions, then the corresponding series converges uniformly.
Keywords: equation with singular coefficients, Dirichlet problem, spectral method, Bessel functions, double row.
@article{IVM_2019_10_a0,
     author = {A. A. Abashkin and I. P. Egorova},
     title = {Dirichlet problem in parallelepiped for elliptic equation with three singular coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2019_10_a0/}
}
TY  - JOUR
AU  - A. A. Abashkin
AU  - I. P. Egorova
TI  - Dirichlet problem in parallelepiped for elliptic equation with three singular coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2019
SP  - 3
EP  - 14
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2019_10_a0/
LA  - ru
ID  - IVM_2019_10_a0
ER  - 
%0 Journal Article
%A A. A. Abashkin
%A I. P. Egorova
%T Dirichlet problem in parallelepiped for elliptic equation with three singular coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2019
%P 3-14
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2019_10_a0/
%G ru
%F IVM_2019_10_a0
A. A. Abashkin; I. P. Egorova. Dirichlet problem in parallelepiped for elliptic equation with three singular coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2019), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2019_10_a0/

[1] Marichev O. I., “Singulyarnye kraevye zadachi dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, DAN SSSR, 230:3 (1976), 523–526 | MR | Zbl

[2] Lerner M. E., Repin O. A., “O zadache Dirikhle dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. Tekhn. Un-ta. Ser. «Fiz.-matem. nauki», 6 (1998), 5–8

[3] Salakhitdinov M. S., Khasanov A., “Kraevaya zadacha $ND_1$ dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Dokl. Adygeisk. (Cherkesk.) Mezhdunar. AN, 13:1 (2011), 109–116

[4] Abashkin A. A., “Ob odnoi vesovoi kraevoi zadache v beskonechnoi polupolose dlya dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Izv. vuzov. Matem., 2013, no. 6, 3–12 | MR | Zbl

[5] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 11 (2001), 1565–1567 | Zbl

[6] Sabitov K. B., Vagapova E. V., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s dvumya liniyami vyrozhdeniya v pryamougolnike”, Differents. uravneniya, 49:1 (2013), 68–78 | MR | Zbl

[7] Sabitov K. B., Safina R. M., “Pervaya granichnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Izv. RAN. Ser. matem., 82:2 (2018), 79–112 | MR | Zbl

[8] Lebedev N. N., Spetsialnye funktsii, Lan, C.-Peterburg, 2010

[9] Sabitov K. B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | Zbl

[10] Sabitov K. B., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2013

[11] Vatson G. N., Teoriya besselevykh funktsii, In. lit., M., 1949