Analysis of local dynamics of difference and close to them differential-difference equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the local dynamics of a class nonlinear difference equations which is important for applications. Using the perturbation theory methods we built the sets of singularly perturbed differential-difference equations close to the original difference equations to some extent. We show that the critical cases in the problem of stability of a null balance state have infinite dimension. We offer the method to set special non-linear boundary-value problems that do not contain small parameters. They play the role of normal forms. Their nonlocal dynamics describes the structure of solutions to original equations in a small neighborhood of a balance state. We show that the dynamic properties of difference and close to them differential-difference equations considerably differ.
Mots-clés : bifurcation, singular perturbation
Keywords: stability, normal form, dynamics.
@article{IVM_2018_9_a3,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {Analysis of local dynamics of difference and close to them differential-difference equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--41},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a3/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Analysis of local dynamics of difference and close to them differential-difference equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 29
EP  - 41
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a3/
LA  - ru
ID  - IVM_2018_9_a3
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Analysis of local dynamics of difference and close to them differential-difference equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 29-41
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a3/
%G ru
%F IVM_2018_9_a3
I. S. Kashchenko; S. A. Kashchenko. Analysis of local dynamics of difference and close to them differential-difference equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 29-41. http://geodesic.mathdoc.fr/item/IVM_2018_9_a3/

[1] Erneux T., Applied delay differential equations, Springer, New York, 2009 | MR | Zbl

[2] Wu J., Theory and applications of partial functional differential equations theory and applications of partial functional differential equations, Springer, Berlin, 1996 | Zbl

[3] Maistrenko Yu. L., Romanenko E. N., Sharkovskii A. N., Raznostnye uravneniya i ikh prilozheniya, Nauk. dumka, Kiev, 1986

[4] Maistrenko Yu.L., Maistrenko V. L., Chua L. O., “Cycles of chaotic intervals in a time-delayed Chua's circuit”, Internat. J. Bifur. and Chaos, 3:6 (1993), 1557–1572 | DOI | MR

[5] Kaschenko D. S., “Dinamika prosteishikh kusochno-lineinykh razryvnykh otobrazhenii”, Model. i an. inform. sistem, 19:3 (2012), 73–81 | MR

[6] Shnol E. E., “Ob ustoichivosti nepodvizhnykh tochek dvumernykh otobrazhenii”, Differents. uravneniya, 30:7 (1994), 1156–1167 | Zbl

[7] Kaschenko I. S., Kaschenko S. A., “Normal and quasinormal forms for systems of difference and differential-difference equations”, Commun. Nonlinear Sci. and Numer. Simul., 38 (2016), 243–256 | DOI | MR

[8] Kaschenko S. A., “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnykh uravnenii s malym mnozhitelem pri proizvodnoi”, Differents. uravneniya, 25:8 (1989), 1448–1451 | Zbl

[9] Kaschenko S. A., “Uravneniya Ginzburga–Landau — normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zhurn. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR

[10] Kaschenko I. S., “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zhurn. vychisl. matem. i matem. fiz., 48:12 (2008), 2141–2150 | MR

[11] Kaschenko I. S., “Asimptoticheskii analiz povedeniya reshenii uravneniya s bolshim zapazdyvaniem”, Dokl. RAN, 421:5 (2008), 586–589 | Zbl

[12] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifur. and Chaos, 6:6 (1996), 1093–1109 | DOI | MR | Zbl

[13] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1990 | MR

[14] Kaschenko S. A., “Issledovanie ustoichivosti reshenii lineinykh parabolicheskikh uravnenii s blizkimi k postoyannym koeffitsientami i maloi diffuziei”, Tr. seminara im. I. G. Petrovskogo, 15, 1991, 128–155