Abelian groups with enough $\pi$-regular ring of endomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 21-28

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $\pi$-regular endomorphism ring of an abelian group, which generalizes the concept of regular endomorphism ring was introduced in the works of L. Fuchs and K. Rangaswamy. They described a periodic abelian groups with $\pi$-regular endomorphism rings and found some necessary conditions for an abelian group with $\pi$-regular endomorphism rings. In the present paper we study the abelian groups with enough $\pi$-regular endomorphism ring (i. e., a subclass of abelian groups with $\pi$-regular endomorphism ring) and find the necessary and sufficient conditions for arbitrary abelian groups with enough $\pi$-regular endomorphism ring.
Keywords: abelian group, enough $\pi$-regular endomorphism ring.
@article{IVM_2018_9_a2,
     author = {O. V. Ivanets and V. M. Misyakov},
     title = {Abelian groups with enough $\pi$-regular ring of endomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--28},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/}
}
TY  - JOUR
AU  - O. V. Ivanets
AU  - V. M. Misyakov
TI  - Abelian groups with enough $\pi$-regular ring of endomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 21
EP  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/
LA  - ru
ID  - IVM_2018_9_a2
ER  - 
%0 Journal Article
%A O. V. Ivanets
%A V. M. Misyakov
%T Abelian groups with enough $\pi$-regular ring of endomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 21-28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/
%G ru
%F IVM_2018_9_a2
O. V. Ivanets; V. M. Misyakov. Abelian groups with enough $\pi$-regular ring of endomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 21-28. http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/