Abelian groups with enough $\pi$-regular ring of endomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $\pi$-regular endomorphism ring of an abelian group, which generalizes the concept of regular endomorphism ring was introduced in the works of L. Fuchs and K. Rangaswamy. They described a periodic abelian groups with $\pi$-regular endomorphism rings and found some necessary conditions for an abelian group with $\pi$-regular endomorphism rings. In the present paper we study the abelian groups with enough $\pi$-regular endomorphism ring (i. e., a subclass of abelian groups with $\pi$-regular endomorphism ring) and find the necessary and sufficient conditions for arbitrary abelian groups with enough $\pi$-regular endomorphism ring.
Keywords: abelian group, enough $\pi$-regular endomorphism ring.
@article{IVM_2018_9_a2,
     author = {O. V. Ivanets and V. M. Misyakov},
     title = {Abelian groups with enough $\pi$-regular ring of endomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--28},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/}
}
TY  - JOUR
AU  - O. V. Ivanets
AU  - V. M. Misyakov
TI  - Abelian groups with enough $\pi$-regular ring of endomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 21
EP  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/
LA  - ru
ID  - IVM_2018_9_a2
ER  - 
%0 Journal Article
%A O. V. Ivanets
%A V. M. Misyakov
%T Abelian groups with enough $\pi$-regular ring of endomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 21-28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/
%G ru
%F IVM_2018_9_a2
O. V. Ivanets; V. M. Misyakov. Abelian groups with enough $\pi$-regular ring of endomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 21-28. http://geodesic.mathdoc.fr/item/IVM_2018_9_a2/

[1] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Endomorphism rings of abelian groups”, J. Math. Sci., 110:3 (2002), 2683–2745 | DOI | MR | Zbl

[2] Rangaswamy K. M., “Abelian groups with endomorphism images of special types”, J. Algebra, 6:3 (1967), 271–280 | DOI | MR | Zbl

[3] Fuchs L., Rangaswamy K. M., “On generalized regular rings”, Math. Z., 107:1 (1968), 71–81 | DOI | MR | Zbl

[4] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977

[5] Fuchs L., Abelian groups, Springer, New York, 2015 | MR | Zbl

[6] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed abelian groups”, Comm. in Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl

[7] Misyakov V. M., “Abelevy gruppy s regulyarnym tsentrom koltsa endomorfizmov”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2:40 (2016), 33–36

[8] Karpenko A. V., Misyakov V. M., “O regulyarnosti tsentra koltsa endomorfizmov abelevoi gruppy”, Fundament. i prikl. matem., 13:3 (2007), 39–44

[9] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[10] Krylov P. A., Tuganbaev A. A., “Formalnye matritsy i ikh opredeliteli”, Fundament. i prikl. matem., 19:1 (2014), 65–119