On preservation of the Riemann tensor with respect to some mappings of space with affine connection
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to geodesic and almost geodesic mappings of spaces with affine connection. We find conditions which ensure that the Riemann tensor is an invariant geometric object with respect to the studied mappings. In this work we present an example of the non-trivial geodesic mappings between the flat spaces.
Keywords: Riemann tensor, geodesic mapping, almost geodesic mapping.
@article{IVM_2018_9_a0,
     author = {V. E. Berezovskii and L. E. Kovalev and J. Mike\v{s}},
     title = {On preservation of the {Riemann} tensor with respect to some mappings of space with affine connection},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_9_a0/}
}
TY  - JOUR
AU  - V. E. Berezovskii
AU  - L. E. Kovalev
AU  - J. Mikeš
TI  - On preservation of the Riemann tensor with respect to some mappings of space with affine connection
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_9_a0/
LA  - ru
ID  - IVM_2018_9_a0
ER  - 
%0 Journal Article
%A V. E. Berezovskii
%A L. E. Kovalev
%A J. Mikeš
%T On preservation of the Riemann tensor with respect to some mappings of space with affine connection
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_9_a0/
%G ru
%F IVM_2018_9_a0
V. E. Berezovskii; L. E. Kovalev; J. Mikeš. On preservation of the Riemann tensor with respect to some mappings of space with affine connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2018), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2018_9_a0/

[1] Levi-Civita T., “Sulle transformationi dello equazioni dinamiche”, Ann. Mat. Milano, 24:2 (1896), 255–300 | DOI | Zbl

[2] Petrov A. Z., “Modelirovanie fizicheskikh polei”, Gravitatsiya i teor. otnosit., 4–5, Izd-vo Kazansk. un-ta, Kazan, 1968, 7–21

[3] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, DAN SSSR, 151:4 (1963), 781–782 | Zbl

[4] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinnoi svyaznosti i $e$-struktury”, Matem. zametki, 7:4 (1970), 449–459 | MR

[5] Sobchuk V. S., “Pochti geodezicheskie otobrazheniya rimanovykh prostranstv na simmetricheskie rimanovy prostranstva”, Matem. zametki, 17:5 (1975), 757–783 | MR

[6] Yablonskaya N. V., “O spetsialnykh gruppakh pochti geodezicheskikh preobrazovanii prostranstv affinnoi svyaznosti”, Izv. vuzov. Matem., 1986, no. 1, 78–80

[7] Berezovskii V. E., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Palack. Univ. Olomouc. Math., 35 (1996), 21–24 | MR

[8] Berezovskii V. E., Mikeš J., “Canonical almost geodesic mappings of the first type of affinely conneced spaces”, Russian Math., 58:2 (2014), 1–5 | DOI | MR | Zbl

[9] Berezovskii V. E., Mikeš J., Vanzurová A., “Fundamental PDE's of the canonical almost geodesic mappings of type $\pi_1$”, Bull. Malays. Math. Sci. Soc. (2), 37:3 (2014), 647–659 | MR

[10] Berezovskii V. E., Guseva N. I., Mikeš J., “On special first-type almost geodesic mappings of affine connection spaces preserving a certain tensor”, Math. Notes, 98:3 (2015), 515–518 | DOI | MR | Zbl

[11] Berezovskii V. E., Bácsó S., Mikeš J., “Almost geodesic mappings of affinely connected spaces that preserve the Riemannian curvature”, Ann. Math. Inform., 45 (2015), 3–10 | MR

[12] Berezovskii V. E., Mikeš J., Khudá H. et al., “On canonical almost geodesic mappings which preserve the projective curvature tensor”, Russian Math., 61:6 (2017), 1–5 | DOI | MR | Zbl

[13] Vesić N.O., Velimirović Lj.S., Stanković M.S., “Some invariants of equitorsion third type almost geodesic mappings”, Mediterr. J. Math., 13:6 (2016), 4581–4590 | DOI | MR | Zbl

[14] Aminova A. V., Proektivnye preobrazovaniya psevdorimannovykh mnogoobrazii, Yanus-K, M., 2003

[15] Aminova A. V., “Projective transformations of pseudo-Riemannian manifolds”, J. Math. Sci. (New York), 113:3 (2003), 367–470 | DOI | MR | Zbl

[16] Berezovskii V. E., Mikeš J., “Almost geodesic mappings of spaces with affine connection”, J. Math. Sci. (New York), 207:3 (2015), 389–409 | DOI | MR | Zbl

[17] Eisenhart L. P., Non-Riemannian geometry, AMS Colloq. Publ., 8, Princeton Univ. Press, 1926 | MR

[18] Mikeš J., “Geodesic mappings of affine-connected and Riemannian spaces”, J. Math. Sci. (New York), 78:3 (1996), 311–333 | DOI | MR | Zbl

[19] Mikeš J., “Holomorphically projective mappings and their generalizations”, J. Math. Sci. (New York), 89:3 (1998), 1334–1353 | DOI | MR | Zbl

[20] Mikeš J., Vanžurová A., Hinterleitner I., Geodesic mappings and some generalizations, Palacky Univ. Press, Olomouc, 2009 | MR | Zbl

[21] Mikeš J. et al., Differential geometry of special mappings, Palacky Univ. Press, Olomouc, 2015 | MR | Zbl

[22] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1985

[23] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976

[24] Petrov A. Z., Novye metody v teorii otnositelnosti, Nauka, M., 1966

[25] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979

[26] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya affinno-svyaznykh i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Probl. geom., 13, 1982, 3–26

[27] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966