A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 61-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a criterion of uniform convergence inside the interval $(0, \pi)$ of interpolation processes constructed from eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. The condition of the characteristic is formulated in terms of a one-sided modulus of variations of the function.
Keywords: sinc approximation, interpolation functions, uniform approximation
Mots-clés : Lagrange–Sturm–Liouville processes.
@article{IVM_2018_8_a7,
     author = {A. Yu. Trynin},
     title = {A criterion of convergence of {Lagrange--Sturm--Liouville} processes in terms of one-sided modulus of variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--74},
     publisher = {mathdoc},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_8_a7/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 61
EP  - 74
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_8_a7/
LA  - ru
ID  - IVM_2018_8_a7
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 61-74
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_8_a7/
%G ru
%F IVM_2018_8_a7
A. Yu. Trynin. A criterion of convergence of Lagrange--Sturm--Liouville processes in terms of one-sided modulus of variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2018), pp. 61-74. http://geodesic.mathdoc.fr/item/IVM_2018_8_a7/