On inductive limits for systems of $C^*$-algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a covariant functor from the category of an arbitrary partially ordered set into the category of $C^*$-algebras and their $*$-homomorphisms. In this case one has inductive systems of algebras over maximal directed subsets. The article deals with properties of inductive limits for those systems. In particular, for a functor whose values are Toeplitz algebras, we show that each such an inductive limit is isomorphic to a reduced semigroup $C^*$-algebra defined by a semigroup of rationals. We endow an index set for a family of maximal directed subsets with a topology and study its properties. We establish a connection between this topology and properties of inductive limits.
Keywords: covariant functor, direct product of $C^*$-algebras, inductive limit for an inductive system of $C^*$-algebras, partially ordered set, semigroup $C^*$-algebra, Toeplitz algebra, topology.
@article{IVM_2018_7_a7,
     author = {R. N. Gumerov and E. V. Lipacheva and T. A. Grigoryan},
     title = {On inductive limits for systems of $C^*$-algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--85},
     publisher = {mathdoc},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a7/}
}
TY  - JOUR
AU  - R. N. Gumerov
AU  - E. V. Lipacheva
AU  - T. A. Grigoryan
TI  - On inductive limits for systems of $C^*$-algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 79
EP  - 85
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_7_a7/
LA  - ru
ID  - IVM_2018_7_a7
ER  - 
%0 Journal Article
%A R. N. Gumerov
%A E. V. Lipacheva
%A T. A. Grigoryan
%T On inductive limits for systems of $C^*$-algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 79-85
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_7_a7/
%G ru
%F IVM_2018_7_a7
R. N. Gumerov; E. V. Lipacheva; T. A. Grigoryan. On inductive limits for systems of $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 79-85. http://geodesic.mathdoc.fr/item/IVM_2018_7_a7/

[1] Ruzzi G., “Homotopy of posets, net-cohomology and superselection sectors in globally hyperbolic space-times”, Rev. Math. Phys., 17:9 (2005), 1021–1070 | DOI | MR | Zbl

[2] Ruzzi G., Vasselli E., “A new light on nets of $C^*$-algebras and their representations”, Comm. Math. Phys., 312:3 (2012), 655–694 | DOI | MR | Zbl

[3] Vasselli E., “Presheaves of symmetric tensor categories and nets of $C^*$-algebras”, J. Noncommut. Geometry, 9:1 (2015), 121–159 | DOI | MR | Zbl

[4] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73:5 (1967), 722–726 | DOI | MR | Zbl

[5] Douglas R. G., “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128:3–4 (1972), 143–151 | DOI | MR | Zbl

[6] Murphy G. J., “Ordered groups and Toeplitz algebras”, J. Oper. Theory, 18:2 (1987), 303–326 | MR | Zbl

[7] Adji S., Laca M., Nilsen M., Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122:4 (1994), 1133–1141 | DOI | MR | Zbl

[8] Grigoryan S. A., Salakhutdinov A. F., “$C^*$-algebry, porozhdennye polugruppami s sokrascheniem”, Sib. matem. zhurn., 51:1 (2010), 16–25 | Zbl

[9] Grigoryan T. A., Lipacheva E. V., Tepoyan V. A., “O rasshirenii algebry Teplitsa”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 154:4 (2012), 130–138 | MR

[10] Li X., “Nuclearity of semigroup $C^*$-algebras and the connection to amenability”, Adv. Math., 244 (2013), 626–662 | DOI | MR | Zbl

[11] Lipacheva E. V., Ovsepyan K. G., “Struktura podalgebr algebry Teplitsa, nepodvizhnykh otnositelno konechnoi gruppy avtomorfizmov”, Izv. vuzov. Matem., 2015, no. 6, 14–23

[12] Lipacheva E. V., Ovsepyan K. G., “Struktura invariantnykh idealov nekotorykh podalgebr algebry Teplitsa”, Izv. NAN Armenii, 50:2 (2015), 38–52

[13] Lipacheva E. V., Ovsepyan K. G., “Avtomorfizmy nekotorykh podalgebr algebry Teplitsa”, Sib. matem. zhurn., 57:3 (2016), 666–674 | Zbl

[14] Grigoryan S., Grigoryan T., Lipacheva E., Sitdikov A., “$C^*$-algebra generated by the paths semigroup”, Lobachevskii J. Math., 37:6 (2016), 740–748 | DOI | MR | Zbl

[15] Gumerov R. N., “Predelnye avtomorfizmy $C^*$-algebr, porozhdennykh izometricheskimi predstavleniyami polugrupp ratsionalnykh chisel”, Sib. matem. zhurn., 59:1 (2018), 95–109

[16] Blackadar B., Operator algebras. Theory of $C^*$-algebras and von Neumann algebras, Encycl. Math. Sci., 122, Springer, Berlin, 2006 | DOI | MR

[17] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989

[18] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[19] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972

[20] Grigorian S. A., Gumerov R. N., “On a covering group theorem and its applications”, Lobachevskii J. Math., 10 (2002), 9–16 | MR | Zbl

[21] Gumerov R. N., “On finite-sheeted covering mappings onto solenoids”, Proc. Amer. Math. Soc., 133:9 (2005), 2771–2778 | DOI | MR | Zbl

[22] Gumerov R. N., “On the existence of means on solenoids”, Lobachevskii J. Math., 17 (2005), 43–46 | MR | Zbl

[23] Grigorian S. A., Gumerov R. N., “On the structure of finite coverings of compact connected groups”, Topology Appl., 153:18 (2006), 3598–3614 | DOI | MR | Zbl

[24] Gumerov R. N., “Mnogochleny Veiershtrassa i nakrytiya kompaktnykh grupp”, Sib. matem. zhurn., 54:2 (2013), 320–324 | MR | Zbl

[25] Gumerov R. N., “Kharaktery i nakrytiya kompaktnykh grupp”, Izv. vuzov. Matem., 2014, no. 4, 11–17 | MR | Zbl