Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study of existence of attractors for weak solutions of the regularized problem for viscoelastic medium motion with memory in non-autonomous case. For this we apply the theory of trajectory attractors for non-invariant trajectory spaces and prove the existence of trajectory attractor, global attractor, uniform trajectory attractor and uniform global attractor for this problem.
Keywords: regularized model, viscoelastic medium with memory, weak solution, trajectory attractor, global attractor, uniform trajectory attractor, uniform global attractor, existence theorem.
@article{IVM_2018_7_a6,
     author = {A. S. Boldyrev and V. G. Zvyagin},
     title = {Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--78},
     publisher = {mathdoc},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/}
}
TY  - JOUR
AU  - A. S. Boldyrev
AU  - V. G. Zvyagin
TI  - Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 73
EP  - 78
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/
LA  - ru
ID  - IVM_2018_7_a6
ER  - 
%0 Journal Article
%A A. S. Boldyrev
%A V. G. Zvyagin
%T Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 73-78
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/
%G ru
%F IVM_2018_7_a6
A. S. Boldyrev; V. G. Zvyagin. Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/

[1] Dmitrienko V. T., Zvyagin V. G., “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. Voronezh. gos. un-ta. Ser. Fiz., matem., 2004, no. 2, 148–153

[2] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl

[3] Zvyagin V. G., Vorotnikov D. A., Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, Walter de Gruyter, Berlin, 2008 | MR

[4] Dmitrienko V. T., Zvyagin V. G., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi sredy”, Izv. vuzov. Matem., 2004, no. 9, 24–40

[5] Obukhovskii V., Zecca P., Zvyagin V., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23:2 (2004), 323–337 | DOI | MR | Zbl

[6] Zvyagin A. V., Zvyagin V. G., Polyakov D. M., “O razreshimosti odnoi alfa-modeli dvizheniya zhidkosti s pamyatyu”, Izv. vuzov. Matem., 2018, no. 6, 78–84

[7] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | DOI | MR | Zbl

[8] Zvyagin V. G., Kondratev S. K., “Attraktory uravnenii gidrodinamiki”, UMN, 69:5 (2014), 81–156 | DOI | Zbl

[9] Zvyagin V. G., Kondratev S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Matem. sb., 203:11 (2012), 83–104 | DOI | MR | Zbl

[10] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl

[11] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-autonomous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI | MR | Zbl

[12] Sell G. R., “Nonautonomous differential equations and topological dynamics. I. The basic theory”, Trans. Amer. Math. Soc., 127:2 (1967), 241–262 | MR | Zbl