Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_7_a6, author = {A. S. Boldyrev and V. G. Zvyagin}, title = {Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {73--78}, publisher = {mathdoc}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/} }
TY - JOUR AU - A. S. Boldyrev AU - V. G. Zvyagin TI - Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 73 EP - 78 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/ LA - ru ID - IVM_2018_7_a6 ER -
%0 Journal Article %A A. S. Boldyrev %A V. G. Zvyagin %T Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 73-78 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/ %G ru %F IVM_2018_7_a6
A. S. Boldyrev; V. G. Zvyagin. Attractors for weak solution of a regularized problem of viscoelastic fluids motion with memory in non-autonomous case. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2018_7_a6/
[1] Dmitrienko V. T., Zvyagin V. G., “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. Voronezh. gos. un-ta. Ser. Fiz., matem., 2004, no. 2, 148–153
[2] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravneniya, 38:12 (2002), 1633–1645 | MR | Zbl
[3] Zvyagin V. G., Vorotnikov D. A., Topological approximation methods for evolutionary problems of nonlinear hydrodynamics, Walter de Gruyter, Berlin, 2008 | MR
[4] Dmitrienko V. T., Zvyagin V. G., “O silnykh resheniyakh nachalno-kraevoi zadachi dlya regulyarizovannoi modeli neszhimaemoi vyazkouprugoi sredy”, Izv. vuzov. Matem., 2004, no. 9, 24–40
[5] Obukhovskii V., Zecca P., Zvyagin V., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23:2 (2004), 323–337 | DOI | MR | Zbl
[6] Zvyagin A. V., Zvyagin V. G., Polyakov D. M., “O razreshimosti odnoi alfa-modeli dvizheniya zhidkosti s pamyatyu”, Izv. vuzov. Matem., 2018, no. 6, 78–84
[7] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. Math. Pures Appl., 76:10 (1997), 913–964 | DOI | MR | Zbl
[8] Zvyagin V. G., Kondratev S. K., “Attraktory uravnenii gidrodinamiki”, UMN, 69:5 (2014), 81–156 | DOI | Zbl
[9] Zvyagin V. G., Kondratev S. K., “Attraktory slabykh reshenii regulyarizovannoi sistemy uravnenii dvizheniya zhidkikh sred s pamyatyu”, Matem. sb., 203:11 (2012), 83–104 | DOI | MR | Zbl
[10] Vorotnikov D. A., Zvyagin V. G., “Trajectory and global attractors of the boundary value problem for autonomous motion equations of viscoelastic medium”, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl
[11] Vorotnikov D. A., Zvyagin V. G., “Uniform attractors for non-autonomous motion equations of viscoelastic medium”, J. Math. Anal. Appl., 325:1 (2007), 438–458 | DOI | MR | Zbl
[12] Sell G. R., “Nonautonomous differential equations and topological dynamics. I. The basic theory”, Trans. Amer. Math. Soc., 127:2 (1967), 241–262 | MR | Zbl