Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_7_a5, author = {N. V. Banichuk and S. Yu. Ivanova and V. S. Afanas'ev}, title = {Mechanics of axially moving and vibrating in transverse direction orthotropic thermoelastic web}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {67--72}, publisher = {mathdoc}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a5/} }
TY - JOUR AU - N. V. Banichuk AU - S. Yu. Ivanova AU - V. S. Afanas'ev TI - Mechanics of axially moving and vibrating in transverse direction orthotropic thermoelastic web JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 67 EP - 72 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_7_a5/ LA - ru ID - IVM_2018_7_a5 ER -
%0 Journal Article %A N. V. Banichuk %A S. Yu. Ivanova %A V. S. Afanas'ev %T Mechanics of axially moving and vibrating in transverse direction orthotropic thermoelastic web %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 67-72 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_7_a5/ %G ru %F IVM_2018_7_a5
N. V. Banichuk; S. Yu. Ivanova; V. S. Afanas'ev. Mechanics of axially moving and vibrating in transverse direction orthotropic thermoelastic web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 67-72. http://geodesic.mathdoc.fr/item/IVM_2018_7_a5/
[1] Sack R. A., “Transvers oscillations in travelling strings”, British J. Appl. Phys., 5:6 (1954), 224–226 | DOI
[2] Archibald F. R., Emslie A. G., “The vibration of a string having a uniform motion along its length”, ASME J. Appl. Mech., 25:3 (1958), 347–348 | Zbl
[3] Mote C. D., “Dynamic stability of an axially moving band”, J. Franklin Institute, 285:5 (1968), 329–346 | DOI | Zbl
[4] Simpson A., “Transvers modes and frequencies of beams translating between fixed end supports”, J. Mechan. Engineering Sci., 15 (1973), 159–164 | DOI
[5] Lin C. C., Mote C. D., “Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading”, ASME J. Appl. Mech., 62:3 (1995), 772–779 | DOI | Zbl
[6] Lin C. C., “Stability and vibration characteristics of axially moving plates”, Int. J. Solid. Struc., 34:24 (1997), 3179–3190 | DOI | Zbl
[7] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “On the instability of an axially moving elastic plate”, Int. J. Solid. Struc., 47:1 (2010), 91–99 | DOI | Zbl
[8] Banichuk N., Jeronen J., Neittaanmäki P., Tuovinen T., “Static instability analysis for travelling membranes and plates interacting with axially moving ideal fluid”, J. Fluid. Struc., 26:2 (2010), 274–291 | DOI
[9] Marynowski K., Kapitaniak T., “Kelvin–Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web”, Int. J. Non-Linear Mech., 37:7 (2002), 1147–1161 | DOI | Zbl
[10] Marynowski K., Dynamics of the axially moving orthotropic web, Lecture notes in applied and computational mechanics, 38, Springer, Germany, 2008 | DOI | Zbl
[11] Marynowski K., Kapitaniak T., “Dynamics of axially moving continua”, Int. J. Mech. Sci., 81:1 (2014), 26–41 | DOI
[12] Banichuk N., Jeronen J., Neittaamäki P., Saksa T., Tuovinen T., Mechanics of moving materials, Springer Internat. Publ., Switzerland, 2014 | MR | Zbl
[13] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966
[14] Kovalenko A. D., Termouprugost, Izdatelkoe ob'edinenie “Vischa shkola”, Kiev, 1975