Optimality conditions in a problem of linear controlled system with bilinear functional
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of optimization of a linear controlled system with a bilinear-modular functional with a penalty type parameter. Based on the notion of strongly extremal control we formulate sufficient optimality conditions. The results are presented in the form of inequalities for functions in one variable with explicit dependence on the parameters of the problem. We adduce illustrative examples.
Keywords: bilinear control problem, maximum principle, sufficient optimality conditions.
@article{IVM_2018_7_a4,
     author = {E. V. Aksenyushkina},
     title = {Optimality conditions in a problem of linear controlled system with bilinear functional},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--66},
     publisher = {mathdoc},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a4/}
}
TY  - JOUR
AU  - E. V. Aksenyushkina
TI  - Optimality conditions in a problem of linear controlled system with bilinear functional
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 61
EP  - 66
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_7_a4/
LA  - ru
ID  - IVM_2018_7_a4
ER  - 
%0 Journal Article
%A E. V. Aksenyushkina
%T Optimality conditions in a problem of linear controlled system with bilinear functional
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 61-66
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_7_a4/
%G ru
%F IVM_2018_7_a4
E. V. Aksenyushkina. Optimality conditions in a problem of linear controlled system with bilinear functional. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 61-66. http://geodesic.mathdoc.fr/item/IVM_2018_7_a4/

[1] Srochko V. A., Antonik V. G., “Dostatochnye usloviya optimalnosti ekstremalnykh upravlenii na osnove formul prirascheniya funktsionala”, Izv. vuzov. Matem., 2014, no. 8, 96–102

[2] Aksenyushkina E. V., Srochko V. A., “Dostatochnye usloviya optimalnosti dlya odnogo klassa nevypuklykh zadach upravleniya”, Zhurn. vychisl. matem. i matem. fiz., 55:10 (2015), 1070–1080 | MR

[3] Antipina N. V., Dykhta V. A., “Lineinye funktsii Lyapunova–Krotova i dostatochnye usloviya optimalnosti v forme printsipa maksimuma”, Izv. vuzov. Matem., 2002, no. 12, 11–22

[4] Antipina N. V., “Vliyanie investitsionnoi sostavlyayuschei na ekonomicheskie pokazateli malykh i srednikh firm”, Baikal Research J., 8:2 (2017), 26–27 | DOI

[5] Baenkhaeva A. V., Timofeev S. V., “Evolyutsionnyi podkhod k razvitiyu sredstv massovoi informatsii: postroenie matematicheskoi modeli”, Izv. Baikalsk. gos. un-ta, 26:5 (2016), 825–833 | DOI

[6] Baenkhaeva A. V., “Issledovanie optimalnogo impulsnogo upravleniya v modeli reklamnykh raskhodov”, Vestn. Buryatsk. gos. un-ta. Matem., informatika, 9 (2009), 18–21