Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_7_a2, author = {M. Kosti\'c and V. E. Fedorov}, title = {Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {36--53}, publisher = {mathdoc}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a2/} }
TY - JOUR AU - M. Kostić AU - V. E. Fedorov TI - Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 36 EP - 53 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_7_a2/ LA - ru ID - IVM_2018_7_a2 ER -
%0 Journal Article %A M. Kostić %A V. E. Fedorov %T Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2018 %P 36-53 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2018_7_a2/ %G ru %F IVM_2018_7_a2
M. Kostić; V. E. Fedorov. Disjoint hypercyclic and disjoint topologically mixing properties of degenerate fractional differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 36-53. http://geodesic.mathdoc.fr/item/IVM_2018_7_a2/
[1] Bés J., Peris A., “Disjointness in hypercyclicity”, J. Math. Anal. Appl., 336:1 (2007), 297–315 | DOI | MR | Zbl
[2] Bernal-González L., “Disjoint hypercyclic operators”, Studia Math., 182:2 (2007), 113–131 | DOI | MR | Zbl
[3] Bès J., Martin Ö., Peris A., Shkarin S., “Disjoint mixing operators”, J. Funct. Anal., 263:5 (2013), 1283–1322 | DOI | MR
[4] Martin Ö., Disjoint hypercyclic and supercyclic composition operators, PhD Thesis, Bowling Green State Univ., 2010 | MR | Zbl
[5] Salas H. N., “Dual disjoint hypercyclic operators”, J. Math. Anal. Appl., 374:1 (2011), 106–117 | DOI | MR | Zbl
[6] Kostić M., Abstract Volterra integro-differential equations, CRC Press, Boca Raton, FL, 2015 | MR | Zbl
[7] Kostić M., “Hypercyclic and topologically mixing properties of degenerate multi-term fractional differential equations”, Differ. Equat. Dyn. Syst., 24:4 (2016), 475–498 | DOI | MR | Zbl
[8] Kostić M., “$\mathcal{D}$-hypercyclic and $\mathcal{D}$-topologically mixing properties of degenerate multi-term fractional differential equations”, Azerbaijan J. Math., 5:2 (2015), 78–95 | MR | Zbl
[9] Arendt W., Batty C. J.K., Hieber M., Neubrander F., Vector-valued Laplace transforms and Cauchy problems, Birkhäuser/Springer Basel AG, Basel, 2001 | MR | Zbl
[10] Xiao T.-J., Liang J., The Cauchy problem for higher-order abstract differential equations, Springer-Verlag, Berlin, 1998 | MR | Zbl
[11] Wong R., Zhao Y.-Q., “Exponential asymptotics of the Mittag-Leffler function”, Constr. Approx., 18:3 (2002), 355–385 | DOI | MR | Zbl
[12] Bajlekova E. G., Fractional evolution equations in Banach spaces, PhD Thesis, Eindhoven Univ. Technology, Univ. Press Facilities, 2001 | MR | Zbl
[13] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[14] Carroll R. W., Showalter R. E., Singular and degenerate Cauchy problems, Academic Press, New York, 1976 | MR
[15] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Pure and Appl. Math., Chapman and Hall/CRC, New York, 1998
[16] Melnikova I. V., Filinkov A. I., Abstract Cauchy problems: three approaches, Chapman Hall/CRC Press, Boca Raton, 2001 | MR | Zbl
[17] Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, Inverse and Ill-Posed Problems, 42, VSP, Utrecht–Boston, 2003 | MR
[18] Ji L., Weber A., “Dynamics of the heat semigroup on symmetric spaces”, Ergodic Theory Dynam. Systems, 30:2 (2010), 457–468 | DOI | MR | Zbl
[19] Astengo F., Di Blasio B., “Dynamics of the heat semigroup in Jacobi analysis”, J. Math. Anal. Appl., 391:1 (2012), 48–56 | DOI | MR | Zbl
[20] Conejero J. A., Mangino E. M., “Hypercyclic semigroups generated by Ornstein–Uhlenbeck operators”, Mediterr. J. Math., 7:1 (2010), 101–109 | DOI | MR | Zbl
[21] Desch W., Schappacher W., Webb G. F., “Hypercyclic and chaotic semigroups of linear operators”, Ergodic Theory Dynam. Systems, 17:4 (1997), 793–819 | DOI | MR | Zbl
[22] Metafune G., “$L^{p}$-spectrum of Ornstein–Uhlenbeck operators”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci. (4), 30:1 (2001), 97–124 | MR | Zbl
[23] Pramanik M., Sarkar R. P., “Chaotic dynamics of the heat semigroup on Riemannian symmetric spaces”, J. Funct. Anal., 266:5 (2014), 2867–2909 | DOI | MR | Zbl
[24] Sarkar R. P., “Chaotic dynamics of the heat semigroup on the Damek–Ricci spaces”, Israel J. Math., 198:1 (2013), 487–508 | DOI | MR | Zbl
[25] Kostić M., “The existence of distributional chaos in abstract degenerate fractional differential equations”, J. Fract. Calc. Appl., 7:2 (2016), 153–174 | MR