$C^*$-algebras generated by mappings. Classification of invariant subspaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 16-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the operator algebra associated with a self-mapping $\varphi $ on a countable set $ X $ which can be represented as a directed graph. The algebra is in a class of operator algebras, generated by a family of partial isometries satisfying some relations on their source and range projectors. Earlier we formulated the irreducibility criterion of such algebras. With its help we will examine the structure of the the corresponding Hilbert space. We will show that for a reducible algebra the underlying Hilbert space is represented either as an infinite sum of invariant subspaces or in the form of a tensor product of finite-dimensional Hilbert space and $ l ^ 2 (\mathbb{Z})$. In the first case we give the conditions when the studied algebra has an irreducible representation into a $ C^*$-algebra generated by a weighted shift operator. In the second case, the algebra has the irreducible finite-dimensional representations indexed by the unit circle.
Keywords: $C^*$-algebra, partial isometry, positive operator, projection, invariant subspace, weighted shift operator
Mots-clés : matrix algebra.
@article{IVM_2018_7_a1,
     author = {S. A. Grigoryan and A. Yu. Kuznetsova},
     title = {$C^*$-algebras generated by mappings. {Classification} of invariant subspaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--35},
     publisher = {mathdoc},
     number = {7},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. Yu. Kuznetsova
TI  - $C^*$-algebras generated by mappings. Classification of invariant subspaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 16
EP  - 35
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/
LA  - ru
ID  - IVM_2018_7_a1
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. Yu. Kuznetsova
%T $C^*$-algebras generated by mappings. Classification of invariant subspaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 16-35
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/
%G ru
%F IVM_2018_7_a1
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-algebras generated by mappings. Classification of invariant subspaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 16-35. http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/

[1] Grigoryan S. A., Kuznetsova A. Yu., “$C^{*}$-algebry, porozhdennye otobrazheniyami. Kriterii neprivodimosti”, Izv. vuzov. Matem., 2018, no. 2, 10–22

[2] Murray F. J., von Neumann J., “On rings of operators”, Ann. Math., 37:1 (1936), 116–229 | DOI | MR

[3] Arveson W., “Operator algebras and measure preserving automorphisms”, Acta Math., 118:1–2 (1967), 95–105 | DOI | MR

[4] Dye H., “On group of measure preserving transformations. I”, Amer. J. Math., 85:4 (1959), 551–576 | DOI | MR

[5] Dye H., “On group of measure preserving transformations. II”, Amer. J. Math., 81:1 (1963), 119–159 | DOI | MR

[6] Krieger W., “On non-singular transformations of a measure space. I, II”, Z. Wahr. Verw. Geb., 11 (1969), 83–119 | DOI | MR | Zbl

[7] Pedersen G. K., $C^*$-algebras and their automorphism groups, Acad. Press, London–New York, 1979 | MR

[8] Arzumanyan V. A., Vershik A. M., “Faktor-predstavleniya skreschennogo proizvedeniya kommutativnoi $C^*$-algebry i polugruppy ee endomorfizmov”, DAN SSSR, 238:3 (1978), 513–516 | Zbl

[9] Arzumanyan V. A., “Operatornye algebry, assotsiirovannye s nesingulyarnymi endomorfizmami prostranstva Lebega”, Izv. AN Armyansk. SSR, 21:6 (1986), 596–616 | MR

[10] Deaconu V., “Grouppoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347:5 (1995), 1779–1786 | DOI | MR | Zbl

[11] Renault J., “Cuntz-like algebras”, Operator theoretical methods, Proc. 17th internat. conf. on operator theory (Timisoara, Romania), The Theta Foundation, Bucharest, 1998, 371–386 | MR

[12] Exel R., Vershik A., $C^{*}$-algebras of irreversible dynamical systems, 2002, arXiv: math/0203185v1[math.OA] | MR

[13] Stacey P. J., “Crossed product of $C^{*}$-algebras by $^{*}$-endomorphisms”, J. Austral. Math. Soc. Ser. A, 54:2 (1993), 204–212 | DOI | MR | Zbl

[14] Adji S., Laca M., Nilsen M., Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122:4 (1994), 1133–1141 | DOI | MR | Zbl

[15] Murphy G. J., “Crossed products of $C^*$-algebras by endomorphisms”, Integr. Equat. Oper. Theory, 24:3 (1996), 298–319 | DOI | MR | Zbl

[16] Grigoryan S., Kuznetsova A., “$C^{*}$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl

[17] Grigoryan S. A., Kuznetsova A. Yu., “$C^{*}$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | DOI | Zbl

[18] Kuznetsova A. Yu., “Ob odnom klasse operatornykh algebr, porozhdennykh semeistvom chastichnykh izometrii”, Zap. nauchn. semin. POMI, 437, 2015, 131–144

[19] Kuznetsova A. Yu., “Ob odnom klase $C^{*}$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:6 (2010), 51–62 | MR | Zbl

[20] Grigoryan S., Kuznetsova A., “On a class of nuclear $C^{*}$-algebras”, An operator theory summer, Proc. 23rd internat. conf. on operator theory (Timisoara, Romania), The Theta Foundation, Bucharest, 2010, 39–50 | MR

[21] Bunce J. W., Deddence J. A., “$C^{*}$-algebra generated by weighted shifts”, Indiana Univ. Math. J., 23:3 (1973), 257–271 | DOI | MR | Zbl

[22] Bunce J. W., Deddence J. A., “A family of $C^{*}$-algebras related to weighted shifts operators”, J. Funct. Anal., 19:1 (1975), 13–24 | DOI | MR | Zbl