Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_7_a1, author = {S. A. Grigoryan and A. Yu. Kuznetsova}, title = {$C^*$-algebras generated by mappings. {Classification} of invariant subspaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--35}, publisher = {mathdoc}, number = {7}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/} }
TY - JOUR AU - S. A. Grigoryan AU - A. Yu. Kuznetsova TI - $C^*$-algebras generated by mappings. Classification of invariant subspaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 16 EP - 35 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/ LA - ru ID - IVM_2018_7_a1 ER -
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-algebras generated by mappings. Classification of invariant subspaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2018), pp. 16-35. http://geodesic.mathdoc.fr/item/IVM_2018_7_a1/
[1] Grigoryan S. A., Kuznetsova A. Yu., “$C^{*}$-algebry, porozhdennye otobrazheniyami. Kriterii neprivodimosti”, Izv. vuzov. Matem., 2018, no. 2, 10–22
[2] Murray F. J., von Neumann J., “On rings of operators”, Ann. Math., 37:1 (1936), 116–229 | DOI | MR
[3] Arveson W., “Operator algebras and measure preserving automorphisms”, Acta Math., 118:1–2 (1967), 95–105 | DOI | MR
[4] Dye H., “On group of measure preserving transformations. I”, Amer. J. Math., 85:4 (1959), 551–576 | DOI | MR
[5] Dye H., “On group of measure preserving transformations. II”, Amer. J. Math., 81:1 (1963), 119–159 | DOI | MR
[6] Krieger W., “On non-singular transformations of a measure space. I, II”, Z. Wahr. Verw. Geb., 11 (1969), 83–119 | DOI | MR | Zbl
[7] Pedersen G. K., $C^*$-algebras and their automorphism groups, Acad. Press, London–New York, 1979 | MR
[8] Arzumanyan V. A., Vershik A. M., “Faktor-predstavleniya skreschennogo proizvedeniya kommutativnoi $C^*$-algebry i polugruppy ee endomorfizmov”, DAN SSSR, 238:3 (1978), 513–516 | Zbl
[9] Arzumanyan V. A., “Operatornye algebry, assotsiirovannye s nesingulyarnymi endomorfizmami prostranstva Lebega”, Izv. AN Armyansk. SSR, 21:6 (1986), 596–616 | MR
[10] Deaconu V., “Grouppoids associated with endomorphisms”, Trans. Amer. Math. Soc., 347:5 (1995), 1779–1786 | DOI | MR | Zbl
[11] Renault J., “Cuntz-like algebras”, Operator theoretical methods, Proc. 17th internat. conf. on operator theory (Timisoara, Romania), The Theta Foundation, Bucharest, 1998, 371–386 | MR
[12] Exel R., Vershik A., $C^{*}$-algebras of irreversible dynamical systems, 2002, arXiv: math/0203185v1[math.OA] | MR
[13] Stacey P. J., “Crossed product of $C^{*}$-algebras by $^{*}$-endomorphisms”, J. Austral. Math. Soc. Ser. A, 54:2 (1993), 204–212 | DOI | MR | Zbl
[14] Adji S., Laca M., Nilsen M., Raeburn I., “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., 122:4 (1994), 1133–1141 | DOI | MR | Zbl
[15] Murphy G. J., “Crossed products of $C^*$-algebras by endomorphisms”, Integr. Equat. Oper. Theory, 24:3 (1996), 298–319 | DOI | MR | Zbl
[16] Grigoryan S., Kuznetsova A., “$C^{*}$-algebras generated by mappings”, Lobachevskii J. Math., 29:1 (2008), 5–8 | DOI | MR | Zbl
[17] Grigoryan S. A., Kuznetsova A. Yu., “$C^{*}$-algebry, porozhdennye otobrazheniyami”, Matem. zametki, 87:5 (2010), 694–703 | DOI | Zbl
[18] Kuznetsova A. Yu., “Ob odnom klasse operatornykh algebr, porozhdennykh semeistvom chastichnykh izometrii”, Zap. nauchn. semin. POMI, 437, 2015, 131–144
[19] Kuznetsova A. Yu., “Ob odnom klase $C^{*}$-algebr, porozhdennykh schetnym semeistvom chastichnykh izometrii”, Izv. NAN Armenii. Matem., 45:6 (2010), 51–62 | MR | Zbl
[20] Grigoryan S., Kuznetsova A., “On a class of nuclear $C^{*}$-algebras”, An operator theory summer, Proc. 23rd internat. conf. on operator theory (Timisoara, Romania), The Theta Foundation, Bucharest, 2010, 39–50 | MR
[21] Bunce J. W., Deddence J. A., “$C^{*}$-algebra generated by weighted shifts”, Indiana Univ. Math. J., 23:3 (1973), 257–271 | DOI | MR | Zbl
[22] Bunce J. W., Deddence J. A., “A family of $C^{*}$-algebras related to weighted shifts operators”, J. Funct. Anal., 19:1 (1975), 13–24 | DOI | MR | Zbl