Three-webs defined by symmetrical functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 63-77
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider local differential-geometrical properties of curvilinear $k$-webs defined by symmetric functions (the webs $SW(k)$). The algebraic rectilinear $k$-webs defined by algebraic curves of genus $0$ are the symmetric $k$-webs. We prove that $3$ three-parameter families of $T$-configurations are closed on every symmetric $k$-web. We find the equations of a rectilinear $SW(k)$-web in adapted coordinates. It is proved that the curvature of a $SW(k)$-web is a skew-symmetric function with respect to adapted coordinates. In conclusion, we formulate some unsolved problems.
Keywords:
curvilinear $k$-web, symmetric $k$-web, $k$-web equations, rectilinear $k$-web, algebraic $k$-web, three-web curvature.
Mots-clés : Thomsen configuration
Mots-clés : Thomsen configuration
@article{IVM_2018_6_a5,
author = {A. M. Shelekhov},
title = {Three-webs defined by symmetrical functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {63--77},
publisher = {mathdoc},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/}
}
A. M. Shelekhov. Three-webs defined by symmetrical functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 63-77. http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/