Three-webs defined by symmetrical functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 63-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider local differential-geometrical properties of curvilinear $k$-webs defined by symmetric functions (the webs $SW(k)$). The algebraic rectilinear $k$-webs defined by algebraic curves of genus $0$ are the symmetric $k$-webs. We prove that $3$ three-parameter families of $T$-configurations are closed on every symmetric $k$-web. We find the equations of a rectilinear $SW(k)$-web in adapted coordinates. It is proved that the curvature of a $SW(k)$-web is a skew-symmetric function with respect to adapted coordinates. In conclusion, we formulate some unsolved problems.
Keywords: curvilinear $k$-web, symmetric $k$-web, $k$-web equations, rectilinear $k$-web, algebraic $k$-web, three-web curvature.
Mots-clés : Thomsen configuration
@article{IVM_2018_6_a5,
     author = {A. M. Shelekhov},
     title = {Three-webs defined by symmetrical functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--77},
     publisher = {mathdoc},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/}
}
TY  - JOUR
AU  - A. M. Shelekhov
TI  - Three-webs defined by symmetrical functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 63
EP  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/
LA  - ru
ID  - IVM_2018_6_a5
ER  - 
%0 Journal Article
%A A. M. Shelekhov
%T Three-webs defined by symmetrical functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 63-77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/
%G ru
%F IVM_2018_6_a5
A. M. Shelekhov. Three-webs defined by symmetrical functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 63-77. http://geodesic.mathdoc.fr/item/IVM_2018_6_a5/

[1] Blyashke V., Vvedenie v geometriyu tkanei, Fizmatgiz, M., 1959 | MR

[2] Goldberg V. V., Lychagin V. V., “On the Blaschke conjecture for $3$-webs”, J. of Geom. Anal., 16:1 (2006), 69–115 | DOI | MR

[3] Shelekhov A. M., Lazareva V. B., Utkin A. A., Krivolineinye tri-tkani, Tver, 2013

[4] Shelekhov A. M., “Reshenie problemy Gronvella ob ekvivalentnosti grassmanovykh tkanei”, Izv. PGPU im. V.G. Belinskogo, fiz.-matem. i tekhn. nauki, 1:26 (2011), 311–320