Asymptotic of eigenvalues of differential operator with alternating weight function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 31-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a differential operator of the sixth order with alternating weight function. The potential of the operator has a first-order discontinuity at some point of a segment on which the operator is considered. The boundary conditions are separated. We study the asymptotics of solutions to corresponding differential equations and find the asymptotic behavior of the eigenvalues of the considered differential operator.
Keywords: differential operator, separated boundary conditions, alternating weight function, indicator diagram, asymptotic behavior of eigenvalues.
@article{IVM_2018_6_a3,
     author = {S. I. Mitrokhin},
     title = {Asymptotic of eigenvalues of differential operator with alternating weight function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--47},
     publisher = {mathdoc},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Asymptotic of eigenvalues of differential operator with alternating weight function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 31
EP  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/
LA  - ru
ID  - IVM_2018_6_a3
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Asymptotic of eigenvalues of differential operator with alternating weight function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 31-47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/
%G ru
%F IVM_2018_6_a3
S. I. Mitrokhin. Asymptotic of eigenvalues of differential operator with alternating weight function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 31-47. http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/

[1] Ilin V. A., “O skhodimosti razlozhenii po sobstvennym funktsiyam v tochkakh razryva koeffitsientov differentsialnogo operatora”, Matem. zametki, 22:5 (1977), 698–723

[2] Budaev V. D., “O skhodimosti spektralnykh razlozhenii v tochke razryva koeffitsientov lineinogo differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 293:2 (1987), 270–274 | MR

[3] Budaev V. D., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii operatora vtorogo poryadka s razryvnymi koeffitsientami”, Differents. uravneniya, 23:6 (1987), 941–952 | MR

[4] Gottlieb H. P.W., “Iso-spectral operators: some model examples with discontinuous coefficients”, Journal of Math. Anal. and Appl., 132 (1988), 123–137 | DOI | MR

[5] Mitrokhin S. I., “O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov vtorogo poryadka s razryvnoi vesovoi funktsiei”, Dokl. RAN, 356:1 (1997), 13–15

[6] Gurevich A. P., Khromov A. P., “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Matem. zametki, 56:1 (1994), 3–15

[7] Mitrokhin S. I., Spektralnaya teoriya operatorov: gladkie, razryvnye, summiruemye koefffitsienty, INTUIT, M., 2009

[8] Vinokurov V. A., Sadovnichii V. A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN. Ser. matem., 64:4 (2000), 47–108 | DOI

[9] Mitrokhin S. I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka s summiruemymi koeffitsientami”, Vestn. Moskovsk. un-ta. Ser. matem., mekh., 2009, no. 3, 14–17 | MR

[10] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI

[11] Mitrokhin S. I., “O spektralnykh svoistvakh differentsialnogo operatora s summiruemym potentsialom i gladkoi vesovoi funktsiei”, Vestn. SamGU. Estestvennonauch. ser., 2008, no. 8(1/67), 172–187

[12] Mitrokhin S. I., “O spektralnykh svoistvakh differentsialnykh operatorov nechetnogo poryadka s summiruemym potentsialom”, Differents. uravneniya, 47:12 (2011), 1808–1811

[13] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[14] Levitan B. M., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970

[15] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[16] Sadovnichii V. A., Lyubishkin V. A., “O nekotorykh novykh rezultatakh teorii regulyarizovannykh sledov differentsialnykh operatorov”, Differents. uravneniya, 18:1 (1982), 109–116

[17] Mitrokhin S. I., “O “rasscheplenii” kratnykh v glavnom sobstvennykh znachenii mnogotochechnykh kraevykh zadach”, Izv. vuzov. Matem., 1997, no. 3, 38–43

[18] Lidskii V. V., Sadovnichii V. A., “Regulyarizovannye summy kornei odnogo klassa tselykh funktsii”, Funkts. analiz i ego prilozheniya, 1:2 (1967), 52–59