Asymptotic of eigenvalues of differential operator with alternating weight function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 31-47
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a differential operator of the sixth order with alternating weight function. The potential of the operator has a first-order discontinuity at some point of a segment on which the operator is considered. The boundary conditions are separated. We study the asymptotics of solutions to corresponding differential equations and find the asymptotic behavior of the eigenvalues of the considered differential operator.
Keywords:
differential operator, separated boundary conditions, alternating weight function, indicator diagram, asymptotic behavior of eigenvalues.
@article{IVM_2018_6_a3,
author = {S. I. Mitrokhin},
title = {Asymptotic of eigenvalues of differential operator with alternating weight function},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--47},
publisher = {mathdoc},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/}
}
TY - JOUR AU - S. I. Mitrokhin TI - Asymptotic of eigenvalues of differential operator with alternating weight function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 31 EP - 47 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/ LA - ru ID - IVM_2018_6_a3 ER -
S. I. Mitrokhin. Asymptotic of eigenvalues of differential operator with alternating weight function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 31-47. http://geodesic.mathdoc.fr/item/IVM_2018_6_a3/