Boundary-value problem for functional-differential advancing-retarding Tricomi equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 9-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the problem for Tricomi mixed-type equation with multiple functional retarding and advancing. We construct the general solution to the equation. The problem is uiquely solvable.
Keywords: mixed-type equation, integral equation, difference equation.
@article{IVM_2018_6_a1,
     author = {A. N. Zarubin},
     title = {Boundary-value problem for functional-differential advancing-retarding {Tricomi} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {9--24},
     publisher = {mathdoc},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_6_a1/}
}
TY  - JOUR
AU  - A. N. Zarubin
TI  - Boundary-value problem for functional-differential advancing-retarding Tricomi equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 9
EP  - 24
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_6_a1/
LA  - ru
ID  - IVM_2018_6_a1
ER  - 
%0 Journal Article
%A A. N. Zarubin
%T Boundary-value problem for functional-differential advancing-retarding Tricomi equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 9-24
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_6_a1/
%G ru
%F IVM_2018_6_a1
A. N. Zarubin. Boundary-value problem for functional-differential advancing-retarding Tricomi equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2018), pp. 9-24. http://geodesic.mathdoc.fr/item/IVM_2018_6_a1/

[1] Bitsadze A. V., Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959

[2] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, 1973

[3] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Izd-vo Orlovsk. gos. un-ta, Orel, 1999

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[5] Kampe de Fere Zh., Kempbell R., Peto G., Fogel T., Funktsii matematicheskoi fiziki, Fizmatlit, 1963

[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986

[7] Zarubin A. N., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s operezhayusche-zapazdyvayuschim argumentom”, Differents. uravneniya, 48:10 (2012), 1404–1411

[8] Agranovich M. S., Obobschennye funktsii, MTsNMO, M., 2008

[9] Ter-Krikorov A. M., Shabunin M. I., Kurs matematicheskogo analiza, Nauka, M., 1988

[10] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981

[11] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[12] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh primeneniya, Nauka i tekhnika, Minsk, 1987

[13] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003

[14] Ditkin V. A., Prudnikov A. P., Integralnye preobrazovaniya i operatsionnoe ischislenie, Nauka, M., 1961 | MR

[15] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, Nauka, M., 1969

[16] Appel P. and Kampé de Fériet J., Fonctions hypergéométriques et hypersphériques. Polynome d'Hermite, Gauthier-Villars, Paris, 1926