Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that predual of real part of von Newmann algebra is strongly facially symmetric space if and only if is it a direct sum of Abelian algebra and algebra of $I_2$ type. At that, neutral strongly facially symmetric space is predual to Abelian algebra, only.
Mots-clés : face
Keywords: projector, von Neumann algebra, side-symmetric space.
@article{IVM_2018_5_a4,
     author = {M. M. Ibragimov and K. K. Kudaibergenov and Zh. Kh. Seipullaev},
     title = {Facially symmetric spaces and predual ones of {Hermitian} part of von {Neumann} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--40},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_5_a4/}
}
TY  - JOUR
AU  - M. M. Ibragimov
AU  - K. K. Kudaibergenov
AU  - Zh. Kh. Seipullaev
TI  - Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 33
EP  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_5_a4/
LA  - ru
ID  - IVM_2018_5_a4
ER  - 
%0 Journal Article
%A M. M. Ibragimov
%A K. K. Kudaibergenov
%A Zh. Kh. Seipullaev
%T Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 33-40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_5_a4/
%G ru
%F IVM_2018_5_a4
M. M. Ibragimov; K. K. Kudaibergenov; Zh. Kh. Seipullaev. Facially symmetric spaces and predual ones of Hermitian part of von Neumann algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 33-40. http://geodesic.mathdoc.fr/item/IVM_2018_5_a4/

[1] Friedman Y., Russo B., “A geometric spectral theorem”, Quart. J. Math. Oxford. Ser., 37 (147) (1986), 263–277 | DOI | MR

[2] Friedman Y., Russo B., “Affine structure of facially symmetric spaces”, Math. Proc. Cambridge Philos. Soc., 106:1 (1989), 107–124 | DOI | MR

[3] Friedman Y., Russo B., “Some affine geometric aspects of operator algebras”, Pacific J. Math., 137:1 (1989), 123–144 | DOI | MR

[4] Friedman Y., Russo B., “Geometry of the dual ball of the spin factor”, Proc. London Math. Soc., III Ser., 65:1 (1992), 142–174 | DOI | MR

[5] Friedman Y., Russo B., “Classification of atomic facially symmetric spaces”, Canad. J. Math., 45:1 (1993), 33–87 | DOI | MR

[6] Neal M., Russo B., “State space of $JB^*$-triples”, Math. Ann., 328:4 (2004), 585–624 | DOI | MR

[7] Ibragimov M. M., Kudaibergenov K. K., Tleumuratov S. Zh., Seipullaev Zh. Kh., “Geometricheskoe opisanie predsopryazhennogo prostranstva k atomicheskoi kommutativnoi algebre fon Neimana”, Matem. zametki, 93:5 (2013), 726–733 | DOI

[8] Ibragimov M. M., Kudaibergenov K. K., “Geometricheskoe opisanie $L_1$-prostranstv”, Izv. vuzov. Matem., 2013, no. 9, 21–27

[9] Edwards C. M., Ruttimann G. T., “The facial and inner ideal structure of a real $JBW^*$-triple”, Math. Nachr., 222 (2001), 159–184 | 3.0.CO;2-N class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[10] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York, 1979 | MR

[11] Yadgorov N. Zh., “Slabo i silno granevo simmetrichnye prostranstva”, Dokl. AN RUz., 1996, no. 5, 6–8