Special version of collocation method for integral equations of the third kind with fixed singulariries in a kernel
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 20-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a linear integral equation of the third kind with fixed singularities in a kernel. For the approximate solution of these equations in the space of generalized functions we propose and substantiate special version of the collocation method.
Keywords: integral equation of the third kind, space of the generalized functions, approximate solution, collocation method, theoretical substantiation.
@article{IVM_2018_5_a2,
     author = {N. S. Gabbasov and Z. Kh. Galimova},
     title = {Special version of collocation method for integral equations of the third kind with fixed singulariries in a kernel},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--27},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_5_a2/}
}
TY  - JOUR
AU  - N. S. Gabbasov
AU  - Z. Kh. Galimova
TI  - Special version of collocation method for integral equations of the third kind with fixed singulariries in a kernel
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 20
EP  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_5_a2/
LA  - ru
ID  - IVM_2018_5_a2
ER  - 
%0 Journal Article
%A N. S. Gabbasov
%A Z. Kh. Galimova
%T Special version of collocation method for integral equations of the third kind with fixed singulariries in a kernel
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 20-27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_5_a2/
%G ru
%F IVM_2018_5_a2
N. S. Gabbasov; Z. Kh. Galimova. Special version of collocation method for integral equations of the third kind with fixed singulariries in a kernel. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2018), pp. 20-27. http://geodesic.mathdoc.fr/item/IVM_2018_5_a2/

[1] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978

[2] Bart G. R., Warnock R. L., “Linear integral equations of the third-kind”, SIAM J. Math. Anal., 4:4 (1973), 609–622 | DOI | MR

[3] Keiz K. M., Tsvaifel P. F., Lineinaya teoriya perenosa, Mir, M., 1972

[4] Zamaliev R. R., O pryamykh metodakh resheniya integralnykh uravnenii tretego roda s osobennostyami v yadre, Diss. $\dotsc$ kand. fiz.-matem. nauk, KFU, Kazan, 2012

[5] Bzhikhatlov Kh. G., “Ob odnoi kraevoi zadache so smescheniem”, Differents. uravneniya, 9:1 (1973), 162–165

[6] Gabbasov N. S., “Metody resheniya integralnogo uravneniya tretego roda s fiksirovannymi osobennostyami v yadre”, Differents. uravneniya, 45:9 (2009), 1341–1348

[7] Gabbasov N. S., Zamaliev R. R., “Novye varianty splain-metodov dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Differents. uravneniya, 46:9 (2010), 1320–1328

[8] Gabbasov N. S., Zamaliev R. R., “Novyi variant metoda podoblastei dlya integralnykh uravnenii tretego roda s osobennostyami v yadre”, Izv. vuzov. Matem., 2011, no. 5, 12–18

[9] Gabbasov N. S., “Novyi variant metoda kollokatsii dlya odnogo klassa integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 49:9 (2013), 1178–1185

[10] Gabbasov N. S., “Spetsialnyi pryamoi metod resheniya integralnykh uravnenii v osobom sluchae”, Differents. uravneniya, 50:9 (2014), 1245–1252 | DOI

[11] Gabbasov N. S., Galimova Z. Kh., “K chislennomu resheniyu integralnykh uravnenii tretego roda s osobennostyami v yadre”, Izv. vuzov. Matem., 2016, no. 12, 36–45

[12] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980

[13] Pressdorf Z., “Singulyarnoe integralnoe uravnenie s simvolom, obraschayuschimsya v nul v konechnom chisle tochek”, Matem. issledovaniya, 7:1 (1972), 116–132

[14] Gabbasov N. S., Metody resheniya integralnykh uravnenii Fredgolma v prostranstvakh obobschennykh funktsii, Izd-vo Kazansk. un-ta, Kazan, 2006

[15] Olariu F., “Asupra ordinului de approximatie prin polyinoame de interpolare de tip Hermite-Fejer en noduri cvadruple”, An. Univ. Timisoara. Ser. Sti. Mat.-Fiz., 1965, no. 3, 227–234 | MR

[16] Privalov A. A., Teoriya interpolirovaniya funktsii, Izd-vo Sarat. un-ta, Saratov, 1990