On algebras of distributions of isolating formulas of theory of abelian groups and their ordered enrichings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2018), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe algebras of distributions of binary isolating formulas for theories of abelian groups and their ordered enriching. This description is based on general theory of algebras of isolating formulas and uses the specificity of basedness of theories of abelian groups which is based on Shmeleva's invariants. We give Cayley tables for algebras corresponding to theories of base abelian groups and their ordered enrichings, and point out a machinery of transformation of theories of base abelian groups into algebras for arbitrary theories of abelian groups.
Keywords: algebra of distributions of binary isolating formulas, abelian group, elementary theory, ordered enriching.
@article{IVM_2018_4_a0,
     author = {K. A. Baikalova and D. Yu. Emel'yanov and B. Sh. Kulpeshov and E. A. Palyutin and S. V. Sudoplatov},
     title = {On algebras of distributions of isolating formulas of theory of abelian groups and their ordered enrichings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_4_a0/}
}
TY  - JOUR
AU  - K. A. Baikalova
AU  - D. Yu. Emel'yanov
AU  - B. Sh. Kulpeshov
AU  - E. A. Palyutin
AU  - S. V. Sudoplatov
TI  - On algebras of distributions of isolating formulas of theory of abelian groups and their ordered enrichings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_4_a0/
LA  - ru
ID  - IVM_2018_4_a0
ER  - 
%0 Journal Article
%A K. A. Baikalova
%A D. Yu. Emel'yanov
%A B. Sh. Kulpeshov
%A E. A. Palyutin
%A S. V. Sudoplatov
%T On algebras of distributions of isolating formulas of theory of abelian groups and their ordered enrichings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_4_a0/
%G ru
%F IVM_2018_4_a0
K. A. Baikalova; D. Yu. Emel'yanov; B. Sh. Kulpeshov; E. A. Palyutin; S. V. Sudoplatov. On algebras of distributions of isolating formulas of theory of abelian groups and their ordered enrichings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2018), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2018_4_a0/

[1] Shulepov I. V., Sudoplatov S. V., “Algebras of distributions for isolating formulas of a complete theory”, Siberian Elect. Math. Reports, 11 (2014), 380–407 | MR | Zbl

[2] Sudoplatov S. V., “Deterministic and absorbing algebras”, 9th Panhellenic Logic Symposium (July 15–18, 2003, National Techn. University of Athens, Greece, Athens), 91–96

[3] Sudoplatov S. V., Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Izd-vo NGTU, Novosibirsk, 2014

[4] Ovchinnikova E. V., Sudoplatov S. V., “Generations and quotients for algebras of distributions of binary formulas”, Lobachevskii J. Math., 36:4 (2015), 403–406 | DOI | MR | Zbl

[5] Sudoplatov S. V., “Algebras of distributions for binary semi-isolating formulas for families of isolated types and for countably categorical theories”, International Math. Forum, 9:21 (2014), 1029–1033 | DOI | MR

[6] Sudoplatov S. V., “Forcing of infinity and algebras of distributions of binary semi-isolating formulas for strongly minimal theories”, Math. and Stat., 2:5 (2014), 183–187 | MR

[7] Ovchinnikova E. V., Sudoplatov S. V., “Structures of distributions of isolating formulas as derivative structures: for acyclic graphs”, 9th Panhellenic Logic Symposium (July 15–18, 2003, National Techn. University of Athens, Greece, Athens), 2013, 74–79 | MR

[8] Emelyanov D. Yu., “Ob algebrakh raspredelenii binarnykh formul teorii unarov”, Izv. Irkutsk. gos. un-ta. Ser. «Matem.», 17 (2016), 23–36 | Zbl

[9] Emelyanov D. Yu., Kulpeshov B. Sh., Sudoplatov S. V., “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo o-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 13–36 | Zbl

[10] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Fizmatlit, M., 2011 | MR

[11] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982 | MR

[12] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974 | MR

[13] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977 | MR

[14] Robinson A., Complete theories, North-Holland, Amsterdam, 1956 | MR | Zbl

[15] Pillay A., Steinhorn C., “Definable sets in ordered structures. I”, Trans. Amer. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl

[16] Baldwin J. T., Blass A., Glass A. M.W., Kueker D. W., “A “natural” theory without a prime model”, Algebra Universalis, 3 (1973), 152–155 | DOI | MR | Zbl

[17] Popkov R. A., “Raspredelenie schetnykh modelei teorii gruppy tselykh chisel”, Sib. matem. zhurn., 56:1 (2015), 185–191 | MR | Zbl