Asymptotic solving linear bisingular problems with additional boundary layer
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 70-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two bisingular Dirichlet problem with the additional boundary layer: 1) for the second order linear elliptic equation in a ring, 2) for linear ordinary differential equations of second order in a segment. We construct asymptotic solutions of the three-zone, bisingular Dirichlet by using the generalized method of boundary functions and obtain estimates for the residual functions.
Keywords: asymptotic solution, the Dirichlet problem, boundary functions, small parameter, bisingularly problem, three-zone problem, intermediate boundary layer, additional boundary layer.
@article{IVM_2018_3_a7,
     author = {D. A. Tursunov},
     title = {Asymptotic solving linear bisingular problems with additional boundary layer},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--78},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a7/}
}
TY  - JOUR
AU  - D. A. Tursunov
TI  - Asymptotic solving linear bisingular problems with additional boundary layer
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 70
EP  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_3_a7/
LA  - ru
ID  - IVM_2018_3_a7
ER  - 
%0 Journal Article
%A D. A. Tursunov
%T Asymptotic solving linear bisingular problems with additional boundary layer
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 70-78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_3_a7/
%G ru
%F IVM_2018_3_a7
D. A. Tursunov. Asymptotic solving linear bisingular problems with additional boundary layer. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 70-78. http://geodesic.mathdoc.fr/item/IVM_2018_3_a7/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989

[2] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[3] Koul Dzh., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1972

[4] Oleinik O. A., “Ob uravneniyakh ellipticheskogo tipa s malym parametrom pri starshikh proizvodnykh”, Matem sb., 31:1 (1952), 104–117 | Zbl

[5] Eckhaus W., Matched asymptotic expansions and singular perturbation, North-Holland Math. Stud., 6, 1973 | MR

[6] Grasman J., On the birth of boundary layers, Math. Centre Tracts, 36, Mathematish Centrum, Amsterdam, 1971 | MR | Zbl

[7] Nayfeh A. H., Introduction to perturbation techniques, John Wiley Sons, New York, 1981 | MR | Zbl

[8] Ilin A. M., Khachai O. Yu., “Struktura pogranichnykh sloev v singulyarnykh zadachakh”, Dokl. RAN, 445:3 (2012), 256–258 | Zbl

[9] Khachai O. Yu., Asimptotika reshenii singulyarno vozmuschennykh nelineinykh differentsialnykh uravnenii s dopolnitelnymi asimptoticheskimi sloyami, Diss. $\dotsc$ kand. fiz.-matem. nauk, UrO RAN, Ekaterinburg, 2013

[10] Alymkulov K., Tursunov D. A., “Ob odnom metode postroeniya asimptoticheskikh razlozhenii bisingulyarno vozmuschennykh zadach”, Izv. vuzov. Matem., 2016, no. 12, 3–11 | Zbl

[11] Tursunov D. A., Erkebaev U. Z., “Asimptoticheskoe razlozhenie resheniya zadachi Dirikhle dlya koltsa s osobennostyu na granitse”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 1:39 (2016), 42–52

[12] Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s tremya tochkami povorota”, Tr. IMM UrO RAN, 1, no. 22, 2016, 271–281

[13] Tursunov D. A., Erkebaev U. Z., “Asimptoticheskoe razlozhenie resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya s osobennostyami”, Ufimsk. matem. zhurn., 8:1 (2016), 102–112 | Zbl

[14] Tursunov D. A., Erkebaev U. Z., “Asimptotika resheniya bisingulyarno vozmuschennoi zadachi Dirikhle v koltse s kvadratichnym rostom na granitse”, Vestn. YuUrGU. Ser. Matem. Mekhan. Fizika, 2:8 (2016), 52–61 | MR | Zbl

[15] Tursunov D. A., Erkebaev U. Z., “Asimptotika resheniya zadachi Dirikhle dlya bisingulyarno vozmuschennogo uravneniya v koltse”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyuternye nauki, 4:25 (2015), 517–525 | Zbl

[16] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989

[17] Protter M. H., Weinberger H. F., Maximum-principles in differential equations, Diff. Equat. Ser., Prentice-Hall, Inc., N. J., 1967 | MR