Constructive characteristics of full modules of smoothness in mixed metric
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 53-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We adduce a constructive characteristics of full modules of smoothness of natural orders in the space $L_{p_1 p_2}$, $1 \leq p_i \leq \infty$, $i = 1,2$.
Keywords: full modules of smoothness, mixed metric.
@article{IVM_2018_3_a5,
     author = {M. K. Potapov and B. V. Simonov},
     title = {Constructive characteristics of full modules of smoothness in mixed metric},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--61},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a5/}
}
TY  - JOUR
AU  - M. K. Potapov
AU  - B. V. Simonov
TI  - Constructive characteristics of full modules of smoothness in mixed metric
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 53
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_3_a5/
LA  - ru
ID  - IVM_2018_3_a5
ER  - 
%0 Journal Article
%A M. K. Potapov
%A B. V. Simonov
%T Constructive characteristics of full modules of smoothness in mixed metric
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 53-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_3_a5/
%G ru
%F IVM_2018_3_a5
M. K. Potapov; B. V. Simonov. Constructive characteristics of full modules of smoothness in mixed metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 53-61. http://geodesic.mathdoc.fr/item/IVM_2018_3_a5/

[1] Potapov M. K., Simonov B. V., “Polnye moduli gladkosti polozhitelnykh poryadkov funktsii iz prostranstv $L_p$, $1 p \infty$”, Matematika, Sovremen. probl. matem. i mekhan. Tr. Moskovsk. gos. un-ta, X, no. 2, Izd-vo popechitelskogo soveta mekhaniko-matem. f-ta MGU, 2015, 101–133

[2] Potapov M. K., Simonov B. V., “Svoistva polnogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Matematika. Obobschennye integraly i garmonicheskii analiz, Sovremen. probl. matem. i mekhan. Tr. Moskovsk. gos. un-ta, XI, no. 1, Izd-vo popechitelskogo soveta mekhaniko-matem. f-ta MGU, 2016, 76–91

[3] Potapov M. K., Simonov B. V., “Svyaz mezhdu polnymi modulyami gladkosti v metrikakh $L_p$ i $L_\infty$”, Vestn. Moskovsk. un-ta. Ser. 1, Matem. Mekhan., 2016, no. 1, 16–24

[4] Potapov M. K., Simonov B. V., Tikhonov S. Yu., Drobnye moduli gladkosti, Izd-vo Maks-Press, M., 2016

[5] Potapov M. K., Simonov B. V., “Svoistva chastnogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Matematika, Sovremen. probl. matem. i mekhan. Tr. Moskovsk. gos. un-ta, izd-vo popechitelskogo soveta mekhaniko-matem. f-ta MGU im. M. V. Lomonosova, X, no. 1, 2014, 58–70

[6] Potapov M. K., Simonov B. V., “Svoistva smeshannogo modulya gladkosti polozhitelnogo poryadka v smeshannoi metrike”, Vestn. Moskovsk. gos. un-ta, 2014, no. 6, 31–40

[7] Taberski R., “Differences, moduli and derivatives of fractional orders”, Roczn. Comment. Math. Prace Mat., 19:2 (1976/1977), 389–400 | MR

[8] Potapov M. K., Simonov B. V., Tikhonov S. Yu., Moduli gladkosti drobnykh poryadkov, Izd-vo popechitelskogo soveta mekhaniko-matem. f-ta MGU im. M. V. Lomonosova, M., 2014

[9] Timan M. F., “O raznostnykh svoistvakh funktsii mnogikh peremennykh”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 667–676 | Zbl

[10] Potapov M. K., Simonov B. V., Tikhonov S. Yu., Moduli gladkosti drobnykh poryadkov, v. III, Izd-vo popechitelskogo soveta mekhaniko-matem. f-ta MGU im. M. V. Lomonosova, M., 2015