Integral representations for solutions of some types of the Beltrami equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 23-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain integral representations for solutions of some types of the Beltrami equations. This representations allow us to prove analogs of some classical complex analysis for these solutions.
Keywords: Beltrami equation, integral representation, Liuoville theorem, removable set.
@article{IVM_2018_3_a2,
     author = {D. B. Katz and B. A. Kats},
     title = {Integral representations for solutions of some types of the {Beltrami} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--28},
     year = {2018},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a2/}
}
TY  - JOUR
AU  - D. B. Katz
AU  - B. A. Kats
TI  - Integral representations for solutions of some types of the Beltrami equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 23
EP  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_3_a2/
LA  - ru
ID  - IVM_2018_3_a2
ER  - 
%0 Journal Article
%A D. B. Katz
%A B. A. Kats
%T Integral representations for solutions of some types of the Beltrami equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 23-28
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2018_3_a2/
%G ru
%F IVM_2018_3_a2
D. B. Katz; B. A. Kats. Integral representations for solutions of some types of the Beltrami equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 23-28. http://geodesic.mathdoc.fr/item/IVM_2018_3_a2/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR

[2] Bojarski B., “Old and new on Beltrami equations”, Functional analytic methods in complex anal. and appl. to partial diff. equat., Proc. ICTP, 1988, 8–19

[3] Iwaniec T., Martin G., What's new for the Beltrami equation?, Geometric Anal. and Appl., Proc. Centre Math. Appl. Australian Nation. Univ., Canberra, 39, 2001, 132–148 | MR | Zbl

[4] Tungatarov A. B., “O svoistvakh odnogo integralnogo operatora v klassakh summiruemykh funktsii”, Izv. AN Kazakhsk. SSR. Ser. fiz.-matem., 1985, no. 5, 58–62

[5] Abreu-Blaya R., Bory-Reyes J., Peña-Peña D., “On the jump problem for $\beta$-analytic functions”, Complex Var. and Elliptic Equat., 51:8–11 (2006), 763–775 | DOI | MR | Zbl

[6] Abreu Blaya R., Bory Reyes J., Peña-Peña D., Vilaire J.-M., “Riemann boundary value problem for $\beta$-analytic functions”, Internat. J. Pure Appl. Math., 42:1 (2008), 19–37 | MR

[7] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[8] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976 | MR