On some special effects in theory on numerical integration and functions recovery
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 96-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss two questions. First, we consider the existence of close to optimal quadrature formulas with a bad $L^2$-discrepancy of their grids, and the second is the question of how much explicit quadrature formulas are preferable to sorting algorithms. Also, in the model case, we obtaine the solution to the question of approximative possibilities of Smolyak's grid in the problems of recovery of functions.
Keywords: discrepancy in uniform and integral metrics, Smolyak's grid, Korobov's grid, approximative possibilities of a specific computational aggregate, sorting algorithms in problems of numerical integration.
Mots-clés : explicit quadrature formula
@article{IVM_2018_3_a10,
     author = {N. Zh. Nauryzbaev and A. A. Shomanova and N. Temirgaliyev},
     title = {On some special effects in theory on numerical integration and functions recovery},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {96--102},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_3_a10/}
}
TY  - JOUR
AU  - N. Zh. Nauryzbaev
AU  - A. A. Shomanova
AU  - N. Temirgaliyev
TI  - On some special effects in theory on numerical integration and functions recovery
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 96
EP  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_3_a10/
LA  - ru
ID  - IVM_2018_3_a10
ER  - 
%0 Journal Article
%A N. Zh. Nauryzbaev
%A A. A. Shomanova
%A N. Temirgaliyev
%T On some special effects in theory on numerical integration and functions recovery
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 96-102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_3_a10/
%G ru
%F IVM_2018_3_a10
N. Zh. Nauryzbaev; A. A. Shomanova; N. Temirgaliyev. On some special effects in theory on numerical integration and functions recovery. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2018), pp. 96-102. http://geodesic.mathdoc.fr/item/IVM_2018_3_a10/

[1] Nauryzbayev N., Temirgaliyev N., “An exact order of discrepancy of the Smolyak grid and some general conclusions in the theory of numerical integration”, Found. Comput. Math., 12 (2012), 139–172 | DOI | MR | Zbl

[2] Smolyak C. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl

[3] Temirgaliev N., “Klassy $U_s(\beta, \theta, \alpha; \psi)$ i kvadraturnye formuly”, Dokl. RAN, 393:5 (2003), 605–608

[4] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | Zbl

[5] Temirgaliev N., Nauryzbaev N. Zh., Shomanova A. A., “Approksimativnye vozmozhnosti vychislitelnykh agregatov «tipa Smolyaka» s yadrami Dirikhle, Feiera i Valle-Pussena v shkale klassov Ulyanova”, Izv. vuzov. Matem., 2015, no. 7, 75–81 | Zbl

[6] Voronin S. M., Temirgaliev N., “O kvadraturnykh formulakh, svyazannykh s divizorami polya gaussovykh chisel”, Matem. zametki, 46:2 (1989), 34–41 | Zbl

[7] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505

[8] Zhubanysheva A. Zh., Temirgaliev N., Temirgalieva Zh. N., “Primenenie teorii divizorov k postroeniyu tablits optimalnykh koeffitsientov kvadraturnykh formul”, Zhurn. vychisl. matem. i matem. fiz., 49:1 (2009), 14–25 | MR | Zbl

[9] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[10] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963; 2-е изд., перераб. и доп., МЦНМО, М., 2004 | Zbl

[11] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. Moskovsk. gos. un-ta. Ser. matem., mekhan., 1959, no. 4, 3–18 | MR

[12] Hua L.-K., Wang Y., Applications of number theory to numerical analysis, Springer-Verlag, Berlin–Heidelberg–New York, 1981 | Zbl

[13] Hlawka E., “Näherungsformeln zur Berechnung von mehrfachen Integralen mit Anwendungen auf die Berechnungen von Potentialen, Induktionskoeffizienten und Lösungen von Gleichungssystemen”, Number-theoretic analysis, Semin. Proc. (Vienna/Austria 1988–89), Lect. Notes Math., 1452, 1990, 65–111 | DOI | MR | Zbl

[14] Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985

[15] Temirgaliev N., Bailov E. A., Zhubanysheva A. Zh., “Ob obschem algoritme chislennogo integrirovaniya periodicheskikh funktsii mnogikh peremennykh”, Dokl. RAN, 416:2 (2007), 169–173 | Zbl

[16] Bailov E. A., Sikhov M. B., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya funktsii mnogikh peremennykh”, Zhurn. vychisl. matem. i matem. fiz., 54:7 (2014), 1059–1077 | DOI | MR | Zbl

[17] Korobov N. M., “O konechnykh tsepnykh drobyakh”, UMN, 52:6 (1997), 167–168 | DOI

[18] Kan I. D., Frolenkov D. A., “Usilenie teoremy Burgeina–Kontorovicha”, Izv. RAN. Ser. matem., 78:2 (2014), 87–144 | DOI | Zbl