Geometry and topology of some fibered Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 77-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a principal $G$-bundle with $G$-invariant Riemannian metric on its total space. We derive formulas describing the Levi–Civita connection and curvatures in two-dimensional directions. We obtain estimates of the influence of properties of sectional curvatures to topological invariants of the bundle.
Keywords: principal bundle, $G$-connection, Riemannian manifold, Levi–Civita connection, sectional curvature.
@article{IVM_2018_2_a7,
     author = {E. I. Yakovlev and T. A. Gonchar},
     title = {Geometry and topology of some fibered {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--95},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a7/}
}
TY  - JOUR
AU  - E. I. Yakovlev
AU  - T. A. Gonchar
TI  - Geometry and topology of some fibered Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 77
EP  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a7/
LA  - ru
ID  - IVM_2018_2_a7
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%A T. A. Gonchar
%T Geometry and topology of some fibered Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 77-95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a7/
%G ru
%F IVM_2018_2_a7
E. I. Yakovlev; T. A. Gonchar. Geometry and topology of some fibered Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 77-95. http://geodesic.mathdoc.fr/item/IVM_2018_2_a7/

[1] Yakovlev E. I., “Dvukhkontsevaya zadacha dlya nekotorogo klassa mnogoznachnykh funktsionalov”, Funkts. analiz i ego prilozh., 24:4 (1990), 63–73

[2] Yakovlev E. I., “Rassloeniya i geometricheskie struktury, assotsiirovannye s giroskopicheskimi sistemami”, Sovremennaya matematika. Fundamentalnye napravleniya, 22, 2007, 100–126

[3] Ershov Yu. V., Yakovlev E. I., “Obobschennye funktsii rasstoyaniya rimanovykh mnogoobrazii i dvizheniya giroskopicheskikh sistem”, Sib. matem. zhurn., 49:1 (2008), 87–100 | MR | Zbl

[4] Yakovlev E. I., “Sektsionnye krivizny mnogoobrazii tipa Kalutsy–Kleina”, Izv. vuzov. Matem., 1997, no. 9, 75–82

[5] Khyshova O. V., Yakovlev E. I., “Krivizny Richchi mnogoobrazii tipa Kalutsy–Kleina”, Izv. vuzov. Matem., 2001, no. 4, 58–61 | MR | Zbl

[6] Zaitsev A. V., “Nekotorye svyazi mezhdu geometriei i topologiei mnogoobrazii tipa Kalutsy–Kleina s mnogomernoi strukturnoi gruppoi”, Vestn. NNGU. Matem. modelirovanie i optimalnoe upravlenie, 2003, no. 1, 56–62 | Zbl

[7] Zaitsev A. V., “Vliyanie nepolozhitelnosti krivizn mnogoobrazii tipa Kalutsy–Kleina na ikh topologicheskie invarianty”, Vestn. NNGU. Ser. matem., 2003, no. 1, 11–17

[8] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[9] Cheeger J., Gromoll D., “On the structure of complete manifolds of nonnegative curvature”, Ann. Math., 96 (1972), 413–443 | DOI | MR | Zbl

[10] O'Neill B., “The fundamental equations of a submersions”, Mich. Math. J., 13 (1966), 450–469 | MR

[11] Besse A., Mnogoobraziya Einshteina, v. 2, Mir, M., 1990

[12] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl

[13] Perelman G., “Proof of the soul conjecture of Cheeger and Gromoll”, J. Diff. Geometry, 40:1 (1994), 209–212 | DOI | MR | Zbl

[14] Serr Zh.-P., “Singulyarnye gomologii rassloennykh prostranstv”, Rassloennye prostranstva i ikh prilozheniya, In. lit., M., 1958, 8–98 | Zbl

[15] Gromoll D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[16] Shapiro Ya. L., Zhukova N. I., “O prostykh transversalnykh dvurassloeniyakh”, Izv. vuzov. Matem., 1974, no. 4, 104–113 | Zbl