An example of a cosimple and co-commutative compact quantum semigroup
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a co-multiplication on the semigroup Cuntz–Toeplitz $C^*$-algebra and obtain a compact quantum semigroup structure on this algebra. We show that the unique proper ideal of the Cuntz–Toeplitz algebra is not a coideal of the compact quantum semigroup. Thus, the compact quantum semigroup is a cosimple quantum semigroup.
Keywords: $C^*$-algebra, inverse semigroup, semigroup algebra, Wagner representation, compact quantum semigroup, Cuntz algebra, Cuntz semigroup, Cuntz–Toeplitz algebra.
@article{IVM_2018_2_a6,
     author = {E. V. Lipacheva},
     title = {An example of a cosimple and co-commutative compact quantum semigroup},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--76},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a6/}
}
TY  - JOUR
AU  - E. V. Lipacheva
TI  - An example of a cosimple and co-commutative compact quantum semigroup
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 69
EP  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a6/
LA  - ru
ID  - IVM_2018_2_a6
ER  - 
%0 Journal Article
%A E. V. Lipacheva
%T An example of a cosimple and co-commutative compact quantum semigroup
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 69-76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a6/
%G ru
%F IVM_2018_2_a6
E. V. Lipacheva. An example of a cosimple and co-commutative compact quantum semigroup. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 69-76. http://geodesic.mathdoc.fr/item/IVM_2018_2_a6/

[1] Drinfeld V. G., “Quantum groups”, Proceedings ICM Berkeley, 1986, 798–820 | MR

[2] Woronowicz S. L., “Compact matrix pseudogroups”, Commun. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[3] Vaksman L. L., Soibelman Ya. S., “Algebra funktsii na kvantovoi gruppe $SU(2)$”, Funkts. analiz i ego prilozh., 22:3 (1988), 1–14

[4] Woronowicz S. L., “Compact quantum groups”, Symetries quantiques, North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl

[5] Maes A., Van Daele A., “Notes on compact quantum groups”, Nieuw Arch. Wisk., 4:16 (1998), 73–112 | MR

[6] Vaes S., Van Daele A., “Hopf $C^*$-algebras”, Proc. London Math. Soc., 82:2 (2001), 337–384 | DOI | MR | Zbl

[7] Podles P., “Symmetries of quantum spaces. Subgroups and quotient spaces of quantum $SU(2)$ and $SO(3)$ groups”, Commun. Math. Phys., 170 (1995), 1–20 | DOI | MR | Zbl

[8] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Kompaktnaya kvantovaya polugruppa, porozhdennaya izometriei”, Izv. vuzov. Matem., 2011, no. 10, 89–93

[9] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Infinite-dimensional compact quantum semigroup”, Lobachevskii J. Math., 32:4 (2011), 304–316 | DOI | MR | Zbl

[10] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “O kompaktnoi kvantovoi polugruppe $QS\mathrm{red}$”, Izv. vuzov. Matem., 2013, no. 10, 63–68

[11] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., “Operatornyi podkhod k kvantovaniyu polugrupp”, Matem. sb., 205:3 (2014), 15–40 | DOI | Zbl

[12] Grigoryan S. A., Lipacheva E. V., “O strukture $C^*$-algebr, porozhdennykh predstavleniyami elementarnoi inversnoi polugruppy”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-matem. nauki, 158:2 (2016), 180–193 | MR

[13] Cuntz J., “Simple $C^*$-algebra generated by isometries”, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[14] Paterson Alan L. T., Groupoids, inverse semigroups, and their operator algebras, Birkhauser, 1998 | MR

[15] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1972