Bifurcations in the generalized Korteweg–de Vries equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 54-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.
Keywords: partial derivative differential equation, normal form method
Mots-clés : torus, bifurcation.
@article{IVM_2018_2_a5,
     author = {S. A. Kashchenko and M. M. Preobrazhenskaya},
     title = {Bifurcations in the generalized {Korteweg{\textendash}de} {Vries} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {54--68},
     year = {2018},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/}
}
TY  - JOUR
AU  - S. A. Kashchenko
AU  - M. M. Preobrazhenskaya
TI  - Bifurcations in the generalized Korteweg–de Vries equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 54
EP  - 68
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/
LA  - ru
ID  - IVM_2018_2_a5
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%A M. M. Preobrazhenskaya
%T Bifurcations in the generalized Korteweg–de Vries equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 54-68
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/
%G ru
%F IVM_2018_2_a5
S. A. Kashchenko; M. M. Preobrazhenskaya. Bifurcations in the generalized Korteweg–de Vries equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 54-68. http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/

[1] Korteweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves”, Phil. Mag., 39 (1895), 422–443 | DOI | MR

[2] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, Uch. posobie, Izd. Dom «Intellekt», Dolgoprudnyi, 2010

[3] Nikolenko N. A., “Invariantnye, asimptoticheski ustoichivye tory vozmuschennogo uravneniya Kortevega-de Friza”, UMN, 35:5 (1980), 121–180 | Zbl

[4] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR

[5] Kaschenko S. A., “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 1–4 | DOI

[6] Bibikov Yu. N., “Bifurkatsiya tipa Khopfa dlya kvaziperiodicheskikh dvizhenii”, Differents. uravneniya, 16:9 (1980), 1539–1544 | MR | Zbl

[7] Bibikov Yu. N., “Bifurkatsiya ustoichivogo invariantnogo tora iz sostoyaniya ravnovesiya”, Matem. zametki, 48:1 (1990), 15–19 | MR | Zbl

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[9] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973

[10] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[11] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[12] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issledov., M., 2002

[13] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii, RKhD, Izhevsk, 2000

[14] Kudryashov N. A., “On “new travelling wave solutions” of the KdV and the KdV–Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR | Zbl

[15] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Zhurn. vychisl. matem i matem. fiz., 299:5 (1988), 1049–1053

[16] Kashchenko S. A., “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and Chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[17] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 376–381 | MR

[18] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. RAN, 435:2 (2010), 164–167 | MR