Bifurcations in the generalized Korteweg--de Vries equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 54-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.
Keywords:
partial derivative differential equation, normal form method
Mots-clés : torus, bifurcation.
Mots-clés : torus, bifurcation.
@article{IVM_2018_2_a5,
author = {S. A. Kashchenko and M. M. Preobrazhenskaya},
title = {Bifurcations in the generalized {Korteweg--de} {Vries} equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {54--68},
publisher = {mathdoc},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/}
}
TY - JOUR AU - S. A. Kashchenko AU - M. M. Preobrazhenskaya TI - Bifurcations in the generalized Korteweg--de Vries equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 54 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/ LA - ru ID - IVM_2018_2_a5 ER -
S. A. Kashchenko; M. M. Preobrazhenskaya. Bifurcations in the generalized Korteweg--de Vries equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 54-68. http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/