Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_2_a5, author = {S. A. Kashchenko and M. M. Preobrazhenskaya}, title = {Bifurcations in the generalized {Korteweg--de} {Vries} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {54--68}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/} }
TY - JOUR AU - S. A. Kashchenko AU - M. M. Preobrazhenskaya TI - Bifurcations in the generalized Korteweg--de Vries equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 54 EP - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/ LA - ru ID - IVM_2018_2_a5 ER -
S. A. Kashchenko; M. M. Preobrazhenskaya. Bifurcations in the generalized Korteweg--de Vries equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 54-68. http://geodesic.mathdoc.fr/item/IVM_2018_2_a5/
[1] Korteweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular canal and on a new tipe of long stationary waves”, Phil. Mag., 39 (1895), 422–443 | DOI | MR
[2] Kudryashov N. A., Metody nelineinoi matematicheskoi fiziki, Uch. posobie, Izd. Dom «Intellekt», Dolgoprudnyi, 2010
[3] Nikolenko N. A., “Invariantnye, asimptoticheski ustoichivye tory vozmuschennogo uravneniya Kortevega-de Friza”, UMN, 35:5 (1980), 121–180 | Zbl
[4] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR
[5] Kaschenko S. A., “Normalnaya forma dlya uravneniya Kortevega–de Friza–Byurgersa”, Dokl. RAN, 468:4 (2016), 1–4 | DOI
[6] Bibikov Yu. N., “Bifurkatsiya tipa Khopfa dlya kvaziperiodicheskikh dvizhenii”, Differents. uravneniya, 16:9 (1980), 1539–1544 | MR | Zbl
[7] Bibikov Yu. N., “Bifurkatsiya ustoichivogo invariantnogo tora iz sostoyaniya ravnovesiya”, Matem. zametki, 48:1 (1990), 15–19 | MR | Zbl
[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970
[9] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973
[10] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979
[11] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR
[12] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyut. issledov., M., 2002
[13] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii, RKhD, Izhevsk, 2000
[14] Kudryashov N. A., “On “new travelling wave solutions” of the KdV and the KdV–Burgers equations”, Commun. Nonlinear Sci. Numer. Simul., 14:5 (2009), 1891–1900 | DOI | MR | Zbl
[15] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Zhurn. vychisl. matem i matem. fiz., 299:5 (1988), 1049–1053
[16] Kashchenko S. A., “Normalization in the systems with small diffusion”, Int. J. of Bifurcations and Chaos, 6:7 (1996), 1093–1109 | DOI | MR | Zbl
[17] Kaschenko I. S., Kaschenko S. A., “Kvazinormalnye formy dvukhkomponentnykh singulyarno vozmuschennykh sistem”, Dokl. RAN, 447:4 (2012), 376–381 | MR
[18] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. RAN, 435:2 (2010), 164–167 | MR