Solving a problem of Robin type for biharmonic equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 39-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate existence and uniqueness conditions for solution to one Robin type problem for inhomogeneous biharmonic equation in the unit ball. We construct polynomial solution to the problem when the boundary functions of the problems are polynomials.
Keywords: biharmonic equation, Robin type problem, harmonic polynomials, solvability conditions
Mots-clés : polynomial solutions.
@article{IVM_2018_2_a4,
     author = {V. V. Karachik},
     title = {Solving a problem of {Robin} type for biharmonic equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {39--53},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a4/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - Solving a problem of Robin type for biharmonic equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 39
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a4/
LA  - ru
ID  - IVM_2018_2_a4
ER  - 
%0 Journal Article
%A V. V. Karachik
%T Solving a problem of Robin type for biharmonic equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 39-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a4/
%G ru
%F IVM_2018_2_a4
V. V. Karachik. Solving a problem of Robin type for biharmonic equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 39-53. http://geodesic.mathdoc.fr/item/IVM_2018_2_a4/

[1] Lai M-C., Liu H-C., “Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows”, Appl. Math. Comput., 164:3 (2005), 679–695 | MR | Zbl

[2] Dang Q. A., “Iterative method for solving the Neumann boundary problem for biharmonic type equation”, J. Comput. Appl. Math., 196:2 (2006), 634–643 | DOI | MR | Zbl

[3] Dang Q. A., Xuan Thao Mai, “Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics”, Boletim da Sociedade Paranaense de Matem., 31:1 (2013), 65–78 | MR

[4] Karachik V. V., Antropova N. A., “Polinomialnye resheniya zadachi Dirikhle dlya bigarmonicheskogo uravneniya v share”, Differents. uravneniya, 49:2 (2013), 250–254 | Zbl

[5] Karachik V. V., “Ob usloviyakh razreshimosti zadachi Neimana dlya poligarmonicheskogo uravneniya v edinichnom share”, Sib. zhurn. industrialnoi matem., XVI:4 (2013), 61–74 | Zbl

[6] Gomez-Polanco A., Guevara-Jordan J. M., Molina B., “A mimetic iterative scheme for solving biharmonic equations”, Math. and Comput. Model., 57:9–10 (2013), 2132–2139 | DOI | MR | Zbl

[7] Gazzola F., Sweers G., “On positivity for the biharmonic operator under Steklov boundary conditions”, Arch. Rat. Mech. Anal., 188 (2008), 399–427 | DOI | MR | Zbl

[8] Karachik V. V., Sadybekov M. A., Torebek B. T., “Uniqueness of solutions to boundary-value problems for the biharmonic equation in a ball”, Electronic J. Diff. Equat., 2015:244 (2015) | MR

[9] Karachik V. V., “Usloviya razreshimosti zadachi Neimana dlya odnorodnogo poligarmonicheskogo uravneniya”, Differents. uravneniya, 50:11 (2014), 1455–1461 | DOI | Zbl

[10] Gulyaschikh I. A., “Odnorodnaya zadacha Dirikhle–Rike dlya neodnorodnogo bigarmonicheskogo uravneniya v share”, Vestn. YuUrGU. Ser. Matem. Mekhan. Fizika, 8:1 (2016), 57–60

[11] Karachik V. V., Torebek B. T., “On one mathematical model described by boundary value problem for the biharmonic equation”, Vestn. YuUrGU. Ser. «Matem. modelirovanie i programmirovanie», 9:4 (2016), 40–52

[12] Karachik V. V., “O svoistve srednego dlya poligarmonicheskikh funktsii v share”, Matem. tr., 16:2 (2013), 69–88 | Zbl

[13] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1982

[14] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1966 | MR

[15] Karachik V. V., “Postroenie polinomialnykh reshenii nekotorykh kraevykh zadach dlya uravneniya Puassona”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1674–1694 | MR | Zbl

[16] Karachik V. V., “Polinomialnye resheniya differentsialnykh uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami. I”, Vestn. YuUrGU. Ser. Matem. Mekhan. Fizika, 2011, no. 10 (227), 4–17 | Zbl

[17] Karachik V. V., Metod normirovannykh sistem funktsii, Yuzhno-Uralskii gos. un-t, Chelyabinsk, 2014