Cylindrical vessel with liquid in 3D temperature pattern
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 23-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an exact solution of three-dimension thermoelasticity problem for a vessel with liquid in cylindrical coordinate system. Temperature pattern is defined based on a solution of thermal conductivity equation. Next, equations of unsymmetrical problem of the theory of elasticity are solved, besides, the system of resolving equations is reduced to four separate equations relatively to construction displacement. Several exact solutions of boundary-value problems are framed. The results are represented in the form of quite simple formulas.
Keywords: temperature pattern, thermoelasticity, integrable combinations, boundary-value problems, analytical solutions.
@article{IVM_2018_2_a2,
     author = {N. G. Gur'yanov and O. N. Tyuleneva},
     title = {Cylindrical vessel with liquid in {3D} temperature pattern},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--31},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a2/}
}
TY  - JOUR
AU  - N. G. Gur'yanov
AU  - O. N. Tyuleneva
TI  - Cylindrical vessel with liquid in 3D temperature pattern
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 23
EP  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a2/
LA  - ru
ID  - IVM_2018_2_a2
ER  - 
%0 Journal Article
%A N. G. Gur'yanov
%A O. N. Tyuleneva
%T Cylindrical vessel with liquid in 3D temperature pattern
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 23-31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a2/
%G ru
%F IVM_2018_2_a2
N. G. Gur'yanov; O. N. Tyuleneva. Cylindrical vessel with liquid in 3D temperature pattern. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 23-31. http://geodesic.mathdoc.fr/item/IVM_2018_2_a2/

[1] Rekach V. G., Rukovodstvo k resheniyu zadach po teorii uprugosti, Vyssh. shk., M., 1966

[2] Parton V. Z., Perlin P. I., Metody matematicheskoi teorii uprugosti, Nauka, M., 1981

[3] Kovalenko A. D., Izbrannye trudy, Nauk. dumka, Kiev, 1976

[4] Guryanov N. G., Tyuleneva O. N., Kraevye zadachi teorii uprugosti dlya shara i tsilindra, Izd-vo Kazansk. un-ta, Kazan, 2008