Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_2_a0, author = {R. A. Baladai and B. N. Khabibullin}, title = {From the integral estimates of functions to uniform. {II.} {Exact} estimates}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/} }
TY - JOUR AU - R. A. Baladai AU - B. N. Khabibullin TI - From the integral estimates of functions to uniform. II. Exact estimates JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 3 EP - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/ LA - ru ID - IVM_2018_2_a0 ER -
R. A. Baladai; B. N. Khabibullin. From the integral estimates of functions to uniform. II. Exact estimates. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/
[1] Zhu K., Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer-Verlag, 2012 | DOI | MR | Zbl
[2] Massaneda X., Thomas P. J., “Interpolating sequences for Bargmann–Fock spaces in $\mathbb{C}^n$”, Indag. Mathem., N. S., 11:1 (2000), 115–127 | DOI | MR | Zbl
[3] Lindholm N., “Sampling in weighted $L^p$ spaces of entire functions in $\mathbb{C}^n$ and estimates of the Bergman kernel”, J. Funct. Anal., 182 (2001), 390–426 | DOI | MR | Zbl
[4] Baladai R. A., Khabibullin B. N., “Ot integralnykh otsenok funktsii k ravnomernym i lokalno usrednennym”, Izv. vuzov. Matem., 2016, no. 10, 15–25
[5] Shvarts L., Analiz, v. I, Mir, M., 1972
[6] Klimek M., Pluripotential theory, Clarendon Press, Oxford, 1991 | MR | Zbl
[7] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984
[8] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhn. Ser. matem. anal., 23, VINITI, M., 1985, 3–124 | MR
[9] Zhao R., Zhu K., Theory of Bergman spaces in the unit ball of $\mathbb{C}^n$, Mémoires de la Société Mathém. de France, 115, 2008 | MR
[10] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987
[11] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974