From the integral estimates of functions to uniform. II. Exact estimates
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact pointwise estimates of the functions under certain integral constraints on their growth are not often met in the theory of functions of complex variables. An example of this kind of estimation is the pointwise estimation of the module of function in the Fock space by integral norm of this function. We present functional-analytic scheme for obtaining such estimates and illustrate it on the examples of classical Fock–Bargman-type and Bergman–Djrbashian-type spaces of holomorphic functions on $n$-dimensional complex spaces, balls, polydiscs etc.
Keywords:
integral pre-norm, holomorphic function, Fock space, Bergman space.
Mots-clés : automorphism
Mots-clés : automorphism
@article{IVM_2018_2_a0,
author = {R. A. Baladai and B. N. Khabibullin},
title = {From the integral estimates of functions to uniform. {II.} {Exact} estimates},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
publisher = {mathdoc},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/}
}
TY - JOUR AU - R. A. Baladai AU - B. N. Khabibullin TI - From the integral estimates of functions to uniform. II. Exact estimates JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 3 EP - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/ LA - ru ID - IVM_2018_2_a0 ER -
R. A. Baladai; B. N. Khabibullin. From the integral estimates of functions to uniform. II. Exact estimates. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/