From the integral estimates of functions to uniform. II. Exact estimates
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact pointwise estimates of the functions under certain integral constraints on their growth are not often met in the theory of functions of complex variables. An example of this kind of estimation is the pointwise estimation of the module of function in the Fock space by integral norm of this function. We present functional-analytic scheme for obtaining such estimates and illustrate it on the examples of classical Fock–Bargman-type and Bergman–Djrbashian-type spaces of holomorphic functions on $n$-dimensional complex spaces, balls, polydiscs etc.
Keywords: integral pre-norm, holomorphic function, Fock space, Bergman space.
Mots-clés : automorphism
@article{IVM_2018_2_a0,
     author = {R. A. Baladai and B. N. Khabibullin},
     title = {From the integral estimates of functions to uniform. {II.} {Exact} estimates},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/}
}
TY  - JOUR
AU  - R. A. Baladai
AU  - B. N. Khabibullin
TI  - From the integral estimates of functions to uniform. II. Exact estimates
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/
LA  - ru
ID  - IVM_2018_2_a0
ER  - 
%0 Journal Article
%A R. A. Baladai
%A B. N. Khabibullin
%T From the integral estimates of functions to uniform. II. Exact estimates
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/
%G ru
%F IVM_2018_2_a0
R. A. Baladai; B. N. Khabibullin. From the integral estimates of functions to uniform. II. Exact estimates. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_2_a0/

[1] Zhu K., Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer-Verlag, 2012 | DOI | MR | Zbl

[2] Massaneda X., Thomas P. J., “Interpolating sequences for Bargmann–Fock spaces in $\mathbb{C}^n$”, Indag. Mathem., N. S., 11:1 (2000), 115–127 | DOI | MR | Zbl

[3] Lindholm N., “Sampling in weighted $L^p$ spaces of entire functions in $\mathbb{C}^n$ and estimates of the Bergman kernel”, J. Funct. Anal., 182 (2001), 390–426 | DOI | MR | Zbl

[4] Baladai R. A., Khabibullin B. N., “Ot integralnykh otsenok funktsii k ravnomernym i lokalno usrednennym”, Izv. vuzov. Matem., 2016, no. 10, 15–25

[5] Shvarts L., Analiz, v. I, Mir, M., 1972

[6] Klimek M., Pluripotential theory, Clarendon Press, Oxford, 1991 | MR | Zbl

[7] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^n$, Mir, M., 1984

[8] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhn. Ser. matem. anal., 23, VINITI, M., 1985, 3–124 | MR

[9] Zhao R., Zhu K., Theory of Bergman spaces in the unit ball of $\mathbb{C}^n$, Mémoires de la Société Mathém. de France, 115, 2008 | MR

[10] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987

[11] Rudin U., Teoriya funktsii v polikruge, Mir, M., 1974