Conditioned gradient method without line-search
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a simple rule for the step-size choice in the conditioned gradient method, which does not require any line-search procedure. It takes into account the current behavior of the method. Its convergence is established under the same assumptions as those for the previously known methods.
Keywords: optimization problems, conditioned gradient method, step-size choice.
@article{IVM_2018_1_a11,
     author = {I. V. Konnov},
     title = {Conditioned gradient method without line-search},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {93--96},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a11/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - Conditioned gradient method without line-search
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 93
EP  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_1_a11/
LA  - ru
ID  - IVM_2018_1_a11
ER  - 
%0 Journal Article
%A I. V. Konnov
%T Conditioned gradient method without line-search
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 93-96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_1_a11/
%G ru
%F IVM_2018_1_a11
I. V. Konnov. Conditioned gradient method without line-search. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 93-96. http://geodesic.mathdoc.fr/item/IVM_2018_1_a11/

[1] Frank M., Wolfe Ph., “Algorithm for quadratic programming”, Nav. Res. Log. Quart., 3:1–2 (1956), 95–110 | DOI | MR

[2] Levitin E. S., Polyak B. T., “Metody minimizatsii pri nalichii ogranichenii”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1986), 787–823

[3] Demyanov V. F., Rubinov A. M., Priblizhennye metody resheniya ekstremalnykh zadach, LGU, Leningrad, 1968

[4] Beck A., Teboulle M., “A conditional gradient method with linear rate of convergence for solving convex linear systems”, Math. Meth. Oper. Res., 59:2 (2004), 235–247 | DOI | MR | Zbl

[5] Freund R. M., Grigas P., “New analysis and results for the Frank-Wolfe method”, Mathem. Progr., 155:1–2 (2016), 199–230 | DOI | MR | Zbl

[6] Vasilev F. P., Metody optimizatsii, v. 1, MTsNMO, M., 2011

[7] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Kazansk. un-t, Kazan, 2013