On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

For two-dimensional Kolmogorov system, where $R\left( x,y\right)$, $S\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $M\left( x,y\right)$, and $N\left( x,y\right) $ are homogeneous polynomials of degrees $m$, $a$, $n$, $n$, $b$, and $b$, respectively, we obtain an explicit expression of the first integral and prove the non-existence of periodic orbits and of limit cycles. We adduce an example of applicability of our result.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{IVM_2018_1_a0,
     author = {R. Boukoucha},
     title = {On the non-existence of periodic orbits for a class of two-dimensional {Kolmogorov} systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/}
}
TY  - JOUR
AU  - R. Boukoucha
TI  - On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/
LA  - ru
ID  - IVM_2018_1_a0
ER  - 
%0 Journal Article
%A R. Boukoucha
%T On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/
%G ru
%F IVM_2018_1_a0
R. Boukoucha. On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/

[1] Gao P., “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273:1–2 (2000), 85–96 | DOI | MR | Zbl

[2] Li C., Llibre J., “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22:12 (2009), 2971–2979 | DOI | MR | Zbl

[3] Llibre J., Valls C., “Polynomial, rational and analytic first integrals for a family of $3$-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62:5 (2011), 761–777 | DOI | MR | Zbl

[4] Huang X., “Limit in a Kolmogorov-type model”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl

[5] Llibre J., Salhi T., “On the dynamics of a class of Kolmogorov systems”, J. Appl. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl

[6] Llyod N. G., Pearson J. M., Sáez E., Szánto I., “Limit cycles of a cubic Kolmogorov system”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR

[7] May R. M., Stability and complexity in model ecosystems, Princeton, New Jersey, 1974

[8] Lavel G., Pellat R., “Plasma physics”, Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975

[9] Busse F. H., “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978, 39

[10] Boukoucha R., “On the dynamics of a class of Kolmogorov systems”, Sib. Elektron. Mat. Izv., 13 (2016), 734–739 | MR | Zbl

[11] Boukoucha R., Bendjeddou A., “On the dynamics of a class of rational Kolmogorov systems”, J. Nonlinear Math. Phys., 23:1 (2016), 21–27 | DOI | MR

[12] Chavarriga J., García I. A., “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific J. Math., 223:2 (2006), 201–218 | DOI | MR | Zbl

[13] Al-Dosary Khalil I. T., “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl

[14] Dumortier F., Llibre J., Artés J., Qualitative theory of planar differential systems, Universitex, Springer, Berlin, 2006 | MR | Zbl

[15] Llibre J., Yu J., Zhang X., “On the limit cycle of the polynomial differential systems with a linear node and homogeneous nonlinearities”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:5 (2014), 1450065 | DOI | MR | Zbl

[16] Bendjeddou A., Boukoucha R., “Explicit non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | MR | Zbl

[17] Bendjeddou A., Boukoucha R., “Explicit limit cycles of a cubic polynomial differential systems”, Stud. Univ. Babes-Bolyai Math., 61:1 (2016), 77–85 | MR

[18] Gasull A., Giacomini H., Torregrosa J., “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200:1 (2007), 448–457 | DOI | MR | Zbl

[19] Cairó L., Llibre J., “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40:24 (2007), 6329–6348 | DOI | MR | Zbl