Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2018_1_a0, author = {R. Boukoucha}, title = {On the non-existence of periodic orbits for a class of two-dimensional {Kolmogorov} systems}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/} }
TY - JOUR AU - R. Boukoucha TI - On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 3 EP - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/ LA - ru ID - IVM_2018_1_a0 ER -
R. Boukoucha. On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/
[1] Gao P., “Hamiltonian structure and first integrals for the Lotka–Volterra systems”, Phys. Lett. A, 273:1–2 (2000), 85–96 | DOI | MR | Zbl
[2] Li C., Llibre J., “The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system”, Nonlinearity, 22:12 (2009), 2971–2979 | DOI | MR | Zbl
[3] Llibre J., Valls C., “Polynomial, rational and analytic first integrals for a family of $3$-dimensional Lotka–Volterra systems”, Z. Angew. Math. Phys., 62:5 (2011), 761–777 | DOI | MR | Zbl
[4] Huang X., “Limit in a Kolmogorov-type model”, Internat. J. Math. and Math Sci., 13:3 (1990), 555–566 | DOI | MR | Zbl
[5] Llibre J., Salhi T., “On the dynamics of a class of Kolmogorov systems”, J. Appl. Math. and Comput., 225 (2013), 242–245 | DOI | MR | Zbl
[6] Llyod N. G., Pearson J. M., Sáez E., Szánto I., “Limit cycles of a cubic Kolmogorov system”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR
[7] May R. M., Stability and complexity in model ecosystems, Princeton, New Jersey, 1974
[8] Lavel G., Pellat R., “Plasma physics”, Proceedings of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975
[9] Busse F. H., “Transition to turbulence via the statistical limit cycle route”, Synergetics, Springer-Verlag, Berlin, 1978, 39
[10] Boukoucha R., “On the dynamics of a class of Kolmogorov systems”, Sib. Elektron. Mat. Izv., 13 (2016), 734–739 | MR | Zbl
[11] Boukoucha R., Bendjeddou A., “On the dynamics of a class of rational Kolmogorov systems”, J. Nonlinear Math. Phys., 23:1 (2016), 21–27 | DOI | MR
[12] Chavarriga J., García I. A., “Existence of limit cycles for real quadratic differential systems with an invariant cubic”, Pacific J. Math., 223:2 (2006), 201–218 | DOI | MR | Zbl
[13] Al-Dosary Khalil I. T., “Non-algebraic limit cycles for parameterized planar polynomial systems”, Int. J. Math., 18:2 (2007), 179–189 | DOI | MR | Zbl
[14] Dumortier F., Llibre J., Artés J., Qualitative theory of planar differential systems, Universitex, Springer, Berlin, 2006 | MR | Zbl
[15] Llibre J., Yu J., Zhang X., “On the limit cycle of the polynomial differential systems with a linear node and homogeneous nonlinearities”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:5 (2014), 1450065 | DOI | MR | Zbl
[16] Bendjeddou A., Boukoucha R., “Explicit non-algebraic limit cycles of a class of polynomial systems”, FJAM, 91:2 (2015), 133–142 | DOI | MR | Zbl
[17] Bendjeddou A., Boukoucha R., “Explicit limit cycles of a cubic polynomial differential systems”, Stud. Univ. Babes-Bolyai Math., 61:1 (2016), 77–85 | MR
[18] Gasull A., Giacomini H., Torregrosa J., “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200:1 (2007), 448–457 | DOI | MR | Zbl
[19] Cairó L., Llibre J., “Phase portraits of cubic polynomial vector fields of Lotka–Volterra type having a rational first integral of degree 2”, J. Phys. A, 40:24 (2007), 6329–6348 | DOI | MR | Zbl