On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
For two-dimensional Kolmogorov system, where $R\left( x,y\right)$, $S\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $M\left( x,y\right)$, and $N\left( x,y\right) $ are homogeneous polynomials of degrees $m$, $a$, $n$, $n$, $b$, and $b$, respectively, we obtain an explicit expression of the first integral and prove the non-existence of periodic orbits and of limit cycles. We adduce an example of applicability of our result.
Keywords:
Kolmogorov system, first integral, periodic orbits, limit cycle.
@article{IVM_2018_1_a0,
author = {R. Boukoucha},
title = {On the non-existence of periodic orbits for a class of two-dimensional {Kolmogorov} systems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
publisher = {mathdoc},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/}
}
TY - JOUR AU - R. Boukoucha TI - On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2018 SP - 3 EP - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/ LA - ru ID - IVM_2018_1_a0 ER -
R. Boukoucha. On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2018), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2018_1_a0/