Abelian groups with monomorphisms invariant with respect to epimorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 86-93
Voir la notice de l'article provenant de la source Math-Net.Ru
If for any injective endomorphism $\alpha$ and surjective endomorphism $\beta$ of abelian group there exist its endomorphism $\gamma$ such that $\beta\alpha=\alpha\gamma$ ($\alpha\beta=\gamma\alpha$, respectively), then such a property of the group is called $R$-property ($L$-property, respectively). It is shown that if reduced torsion-free group possesses $R$- or $L$-property, then endomorphism ring of a group is normal. We describe the divisible groups and direct sums of cyclic groups with $R$- or $L$-property.
Mots-clés :
injective endomorphism
Keywords: surjective endomorphism, normal endomorphism ring.
Keywords: surjective endomorphism, normal endomorphism ring.
@article{IVM_2018_12_a5,
author = {A. R. Chekhlov},
title = {Abelian groups with monomorphisms invariant with respect to epimorphisms},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {86--93},
publisher = {mathdoc},
number = {12},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a5/}
}
A. R. Chekhlov. Abelian groups with monomorphisms invariant with respect to epimorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 86-93. http://geodesic.mathdoc.fr/item/IVM_2018_12_a5/