Oscillations of stratified liquid partially covered by crumpling ice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 70-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem on small motions of ideal stratified fluid with a free surface, partially covered by crumbling ice. By the method of orthogonal projecting the boundary conditions on the moving surface and the introduction of auxiliary problems of the original initial-boundary value problem is reduced to the equivalent Cauchy problem for a differential equation of the second order in a Hilbert space. We find sufficient existence conditions for a strong (with respect to the time variable) solution to the initial-boundary value problem describing the evolution of the specified hydrodynamics system.
Keywords: stratification effect in ideal fluids, initial boundary value problem, differential equation in Hilbert space, Cauchy problem, strong solution.
@article{IVM_2018_12_a4,
     author = {D. O. Tsvetkov},
     title = {Oscillations of stratified liquid partially covered by crumpling ice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--85},
     publisher = {mathdoc},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2018_12_a4/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Oscillations of stratified liquid partially covered by crumpling ice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2018
SP  - 70
EP  - 85
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2018_12_a4/
LA  - ru
ID  - IVM_2018_12_a4
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Oscillations of stratified liquid partially covered by crumpling ice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2018
%P 70-85
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2018_12_a4/
%G ru
%F IVM_2018_12_a4
D. O. Tsvetkov. Oscillations of stratified liquid partially covered by crumpling ice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2018), pp. 70-85. http://geodesic.mathdoc.fr/item/IVM_2018_12_a4/

[1] Kopachevskii N. D., Temnov A. N., “Kolebaniya stratifitsirovannoi zhidkosti v basseine proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 26:5 (1986), 734–755 | MR

[2] Gabov S. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986 | MR

[3] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990

[4] Gabov S. A., Sveshnikov A. G., “Matematicheskie zadachi dinamiki flotiruyuschei zhidkosti”, Itogi nauki i tekhn.. Ser. Matem. anal., 28, 1990, 3–86 | MR | Zbl

[5] Soldatov M. A., “Kolebaniya zhidkosti v basseine, chastichno pokrytom ldom”, Uchen. zap. SGU, 12:2 (2000), 80–83 | MR

[6] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989

[7] Kopachevskii N. D., Integrodifferentsialnye uravneniya Volterra v gilbertovom prostranstve. Spetsialnyi kurs lektsii, FLP “Bondarenko O. A.”, Simferopol, 2012

[8] Sova M., “Cosine operator functions”, Rozpr. Math., 49 (1966), 1–47 | MR

[9] Ivanov V. K., Melnikova I. V., Filinkov A. I., Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Fizmatlit, M., 1995